Table of Contents

HIL-JET

Description

Elasto isotrop-plastic anisotropic constitutive law for solid elements at constant temperature for element jet.

The model

Mechanical analysis of elasto isotropic-plastic anisotropic element undergone large deformation. Isotropic hardening is assumed.

Files

Prepro: LJTHIL.F
Lagamine: JT2HIL.F, JT3HIL.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 63
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step
-1 calcul automatique du NINTV
NPOINT number of points to define the hardening law

Real parameters

Line 1 (2G10.0)
EYoung modulus
ANUPoisson ratio

If NPOINT = 0

Line 1 (2G10.0)
SY11$\sigma_{11}^{y}$
ET11$E_{11}^{t}$
Line 2 (2G10.0)
SY22$\sigma_{22}^{y}$
ET22$E_{22}^{t}$
Line 3 (2G10.0)
SY33$\sigma_{33}^{y}$
ET33 $E_{33}^{t}$
Line 4 (2G10.0)
SY12$\sigma_{12}^{y}$
ET12$E_{12}^{t}$

For 3D analysis:

Line 5 (2G10.0)
SY13$\sigma_{13}^{y}$
ET13$E_{13}^{t}$
Line 6 (2G10.0)
SY23$\sigma_{23}^{y}$
ET23$E_{23}^{t}$

If NPOINT > 0

It needs at least 3 cards for this law (I7, NPOINT = 2)

Line 1 (7G10.0)
SY11 $\sigma_{xx}^{y}$
SY22$\sigma_{yy}^{y}$
SY33 $\sigma_{zz}^{y}$
SY12$\sigma_{xy}^{y}$
SY13 $\sigma_{xz}^{y}$
SY23$\sigma_{zy}^{y}$
Line 2 (2G10.0) - Repeated NPOINT times
EPS(I)(equivalent $\sigma - \epsilon$ relation)
SIG(I)

With NPOINT > 0, the shape of the yield locus is constant ; only its size evolves. The normality rule is not completely fulfilled with this option. It is indeed defined as :
$\dot{\lambda}\frac{\partial f}{\partial \underline{\sigma}} = \underline{\dot{\varepsilon}^{p}} $ = $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\gamma_{12}^{p} } \\ \dot{\gamma_{13}^{p} } \\ \dot{\gamma_{23}^{p} }\end{pmatrix}$ instead of $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\varepsilon_{12}^{p} } \\ \dot{\varepsilon_{13}^{p} } \\ \dot{\varepsilon_{23}^{p} }\end{pmatrix}$

Stresses

Number of stresses

4 for 2D analysis
6 for 3D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 2D analysis

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{ZZ}$
SIG(4)$\sigma_{XY}$

For 3D analysis:

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{ZZ}$
SIG(4)$\sigma_{XY}$
SIG(5)$\sigma_{XZ}$
SIG(6)$\sigma_{YZ}$

State variables

Number of state variables

31 for 2D analysis
24 for 3D analysis

List of state variables

Q(1) current yield limit in tension
Q(2) equivalent plastic strain ($\epsilon$)
Q(3) equivalent VM type stress for this element
Q(4)$\sigma_{xx}$ in local axes of the element
Q(5)$\sigma_{yy}$ in local axes of the element
Q(6)$\sigma_{zz}$ in local axes of the element
Q(7)$\sigma_{xy}$ in local axes of the element
Q(8)$\sigma_{1}$ anti-hourglass stress
Q(9)$\sigma_{2}$ anti-hourglass stress
Q(10 to 13)x nodal coordinates in local axes of the element
Q(14 to 17)y nodal coordinates in local axes of the element
Q(18)0 in plane state
average radius (Xcoordinate) of the element in axisymmetric state
Q(19) area of the element in the XY plane
Q(20) area of the no deformed element
Q(21) X(4) - X(2) in initial structure
Q(22) X(3) - X(1) in initial structure
Q(23) Y(4) - Y(2) in initial structure
Q(24) Y(4) - Y(2) in initial structure
Q(25)$A_{11}$ parameter of anisotropy
Q(26) $A_{12}$ parameter of anisotropy
Q(27) $A_{13}$ parameter of anisotropy
Q(28) $A_{22}$ parameter of anisotropy
Q(29) $A_{23}$ parameter of anisotropy
Q(30) $A_{33}$ parameter of anisotropy
Q(31) $A_{44}$ parameter of anisotropy

For 3D analysis:

Q(1) current yield limit tension
Q(2) equivalent plastic strain ($\overline{\varepsilon}^{p}$)
Q(3) equivalent VM type stress for this element
Q(4)$\sigma_{11}$ anti-hourglass stress
Q(5) $\sigma_{12}$ anti-hourglass stress
Q(6) $\sigma_{13}$ anti-hourglass stress
Q(7) $\sigma_{21}$ anti-hourglass stress
Q(8) $\sigma_{22}$ anti-hourglass stress
Q(9) $\sigma_{23}$ anti-hourglass stress
Q(10) $\sigma_{31}$ anti-hourglass stress
Q(11) $\sigma_{32}$ anti-hourglass stress
Q(12) $\sigma_{33}$ anti-hourglass stress
Q(13) $\sigma_{41}$ anti-hourglass stress
Q(14) $\sigma_{42}$ anti-hourglass stress
Q(15) $\sigma_{43}$ anti-hourglass stress
Q(16) $A_{11}$ parameter of anisotropy
Q(17) $A_{12}$ parameter of anisotropy
Q(18) $A_{13}$ parameter of anisotropy
Q(19) $A_{22}$ parameter of anisotropy
Q(20) $A_{23}$ parameter of anisotropy
Q(21) $A_{33}$ parameter of anisotropy
Q(22) $A_{44}$ parameter of anisotropy
Q(23) $A_{55}$ parameter of anisotropy
Q(24) $A_{66}$ parameter of anisotropy