====== HIL-JET ====== ===== Description ===== Elasto isotrop-plastic anisotropic constitutive law for solid elements at constant temperature for element jet. ==== The model ==== Mechanical analysis of elasto isotropic-plastic anisotropic element undergone large deformation. Isotropic hardening is assumed. ==== Files ==== Prepro: LJTHIL.F \\ Lagamine: JT2HIL.F, JT3HIL.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 63| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (2I5) ^^ |NINTV| number of sub-steps used to integrate numerically the constitutive equation in a time step \\ -1 calcul automatique du NINTV | |NPOINT| number of points to define the hardening law | ==== Real parameters ==== ^ Line 1 (2G10.0) ^^ |E|Young modulus| |ANU|Poisson ratio| === If NPOINT = 0 === ^Line 1 (2G10.0)^^ |SY11|$\sigma_{11}^{y}$| |ET11|$E_{11}^{t}$| ^Line 2 (2G10.0)^^ |SY22|$\sigma_{22}^{y}$| ` |ET22|$E_{22}^{t}$| ^Line 3 (2G10.0)^^ |SY33|$\sigma_{33}^{y}$| |ET33| $E_{33}^{t}$| ^Line 4 (2G10.0)^^ |SY12|$\sigma_{12}^{y}$| |ET12|$E_{12}^{t}$| For 3D analysis: ^Line 5 (2G10.0)^^ |SY13|$\sigma_{13}^{y}$| |ET13|$E_{13}^{t}$| ^Line 6 (2G10.0)^^ |SY23|$\sigma_{23}^{y}$| |ET23|$E_{23}^{t}$| ===If NPOINT > 0 === It needs at least 3 cards for this law (I7, NPOINT = 2) ^Line 1 (7G10.0)^^ |SY11| $\sigma_{xx}^{y}$| |SY22|$\sigma_{yy}^{y}$| |SY33| $\sigma_{zz}^{y}$| |SY12|$\sigma_{xy}^{y}$| |SY13| $\sigma_{xz}^{y}$| |SY23|$\sigma_{zy}^{y}$| ^Line 2 (2G10.0) - Repeated NPOINT times^^ |EPS(I)|(equivalent $\sigma - \epsilon$ relation)| | SIG(I)|:::| With NPOINT > 0, the shape of the yield locus is constant ; only its size evolves. The normality rule is not completely fulfilled with this option. It is indeed defined as :\\ $\dot{\lambda}\frac{\partial f}{\partial \underline{\sigma}} = \underline{\dot{\varepsilon}^{p}} $ = $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\gamma_{12}^{p} } \\ \dot{\gamma_{13}^{p} } \\ \dot{\gamma_{23}^{p} }\end{pmatrix}$ instead of $ \begin{pmatrix} \dot{\varepsilon_{11}^{p} }\\ \dot{\varepsilon_{22}^{p} }\\ \dot{\varepsilon_{33}^{p} }\\ \dot{\varepsilon_{12}^{p} } \\ \dot{\varepsilon_{13}^{p} } \\ \dot{\varepsilon_{23}^{p} }\end{pmatrix}$ ===== Stresses ===== ==== Number of stresses ==== 4 for 2D analysis \\ 6 for 3D analysis ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 2D analysis |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| For 3D analysis: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| |SIG(5)|$\sigma_{XZ}$| |SIG(6)|$\sigma_{YZ}$| ===== State variables ===== ==== Number of state variables ==== 31 for 2D analysis\\ 24 for 3D analysis ==== List of state variables ==== |Q(1)| current yield limit in tension| |Q(2)| equivalent plastic strain ($\epsilon$)| |Q(3)| equivalent VM type stress for this element| |Q(4)|$\sigma_{xx}$ in local axes of the element | |Q(5)|$\sigma_{yy}$ in local axes of the element | |Q(6)|$\sigma_{zz}$ in local axes of the element | |Q(7)|$\sigma_{xy}$ in local axes of the element | |Q(8)|$\sigma_{1}$ anti-hourglass stress| |Q(9)|$\sigma_{2}$ anti-hourglass stress| |Q(10 to 13)|x nodal coordinates in local axes of the element | |Q(14 to 17)|y nodal coordinates in local axes of the element | |Q(18)|0 in plane state \\ average radius (Xcoordinate) of the element in axisymmetric state| |Q(19)| area of the element in the XY plane | |Q(20)| area of the no deformed element | |Q(21)| X(4) - X(2) in initial structure | |Q(22)| X(3) - X(1) in initial structure | |Q(23)| Y(4) - Y(2) in initial structure | |Q(24)| Y(4) - Y(2) in initial structure | |Q(25)|$A_{11}$ parameter of anisotropy| |Q(26)| $A_{12}$ parameter of anisotropy | |Q(27)| $A_{13}$ parameter of anisotropy | |Q(28)| $A_{22}$ parameter of anisotropy | |Q(29)| $A_{23}$ parameter of anisotropy | |Q(30)| $A_{33}$ parameter of anisotropy | |Q(31)| $A_{44}$ parameter of anisotropy | For 3D analysis: |Q(1)| current yield limit tension | |Q(2)| equivalent plastic strain ($\overline{\varepsilon}^{p}$)| |Q(3)| equivalent VM type stress for this element | |Q(4)|$\sigma_{11}$ anti-hourglass stress | |Q(5)| $\sigma_{12}$ anti-hourglass stress | |Q(6)| $\sigma_{13}$ anti-hourglass stress | |Q(7)| $\sigma_{21}$ anti-hourglass stress | |Q(8)| $\sigma_{22}$ anti-hourglass stress | |Q(9)| $\sigma_{23}$ anti-hourglass stress | |Q(10)| $\sigma_{31}$ anti-hourglass stress | |Q(11)| $\sigma_{32}$ anti-hourglass stress | |Q(12)| $\sigma_{33}$ anti-hourglass stress | |Q(13)| $\sigma_{41}$ anti-hourglass stress | |Q(14)| $\sigma_{42}$ anti-hourglass stress | |Q(15)| $\sigma_{43}$ anti-hourglass stress | |Q(16)| $A_{11}$ parameter of anisotropy | |Q(17)| $A_{12}$ parameter of anisotropy | |Q(18)| $A_{13}$ parameter of anisotropy | |Q(19)| $A_{22}$ parameter of anisotropy | |Q(20)| $A_{23}$ parameter of anisotropy | |Q(21)| $A_{33}$ parameter of anisotropy | |Q(22)| $A_{44}$ parameter of anisotropy | |Q(23)| $A_{55}$ parameter of anisotropy | |Q(24)| $A_{66}$ parameter of anisotropy |