Constitutive law for mixed limit condition for element FMIVP (seepage and evaporation)
This law is only used for non linear analysis of solids. This constitutive law allows to impose a mixed limit condition on a boundary, with a classical penalty method, combining with an evaporation boundary condition.
Prepro: LFMIVP.F
Plane stress state | YES |
Plane strain state | YES |
Axisymmetric state | YES |
3D state | YES |
Generalized plane state | YES |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 198 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (2I5) | |
---|---|
IDDL | DDL number (3 = water, 4 = air, 5 = temperature, in 2D case) |
DDL number (4 = water, 5 = air, 6 = temperature, in 3D case) | |
ISRW | Formulation index for retention curve $S_{rw}$ |
Line 1 (5G10.0) | |
---|---|
COEFK | K penalty coefficient |
ALPHA | Mass transfer coefficient $\left[m/s\right]$ |
PG0 | Definition gas pression $\left[Pa\right]$ |
T0 | Definition temperature pression $\left[ K\right]$ |
L | Latent heat of the liquid $\left[ J/kg\right]$ |
BETA | Convective heat transfer coefficient |
Line 2 (6G10.0) | |
CSR1 | 1st coefficient of the function $S_{rw}$ |
CSR2 | 2nd coefficient of the function $S_{rw}$ |
CSR3 | 3rd coefficient of the function $S_{rw}$ |
CSR4 | 4th coefficient of the function $S_{rw}$ |
SRES | residual saturation degree ( = $S_{res}$) |
SRFIELD | field saturation degree ( = $S_{r,field}$) |
AIREV | air entry value $\left[Pa\right]$ |
3
SIG(1) | water output or input flow at the boundary |
SIG(2) | gas output or input flow at the boundary |
SIG(3) | temperature output or input flow at the boundary |
5
Q(1) | = 0 |
Q(2) | porous surface relative humidity |
Q(3) | drying air relative humidity |
Q(4) | total water flow |
Q(5) | evaporation flow |
The total water flow boundary condition is expressed as the sum of the seepage flow and vapour exchange flow
\[
\vec{q} = \vec{S} + \vec{E}
\]
A ramp function gives the expression of the seepage liquid flow $\vec{S}$ :
\[
\left\{
\begin{array}{l}
\vec{S} = K_{pen} . (p_w^f - p_{atm})^2\ \text{if}\ p_w^f \geq p_w^{cav}\ \text{and}\ p_w^f \geq p_{atm}\\
\vec{S} = 0 \ \text{if}\ p_w^f < p_w^{cav}\ \text{or}\ p_w^f < p_{atm}
\end{array}
\right.
\]
With $p_w^f$ the pore water pressure in the rock mass formation, $p_w^{cav}$ the water pressure corresponding to the relative humidity in the cavity (using Eq. 10), $p_{atm}$ the atmospheric pressure and $k_{pen}$ a seepage transfer coefficient.
The evaporation exchange is expressed as the difference of vapour density between the tunnel atmosphere and rock mass: \[ \vec{E} = \alpha_0 S_{r,w}^f (\rho_v^f - \rho_v^{cav}) \] With $\rho_v^f$ and $\rho_v^{cav}$ vapour density respectively in the formation and in the cavity and $\alpha$ a vapour mass transfer coefficient (that depends on the degree of saturation $S_{r,w}^f$).
De la même manière, on exprime que l’évaporation en surface dépend des conditions thermiques. Le flux de chaleur $\vec{t}$ de la frontière vers l’extérieur est exprimé par :
\[
\vec{t} = L \vec{q} - \beta \left( T_{air} - T_{roche}^\Gamma \right)
\]
Avec $T_{air}$ et $T_{roche}^\Gamma$ la température respectivement de l’air ambiant et en paroi d’échantillon, $\beta$ un coefficient de transfert de chaleur et $L$ la chaleur latente de vaporisation (= 2500 kJ/kg). Le premier terme correspond à l’énergie consommée pour la vaporisation de l’eau en paroi, tandis que le second terme correspond au flux de chaleur convectif entre l’atmosphère et le milieu poreux.