====== FMIVP ====== ===== Description ===== Constitutive law for mixed limit condition for element [[elements:fmivp|FMIVP]] (seepage and evaporation) ==== The model ==== This law is only used for non linear analysis of solids. This constitutive law allows to impose a mixed limit condition on a boundary, with a classical penalty method, combining with an evaporation boundary condition. ==== Files ==== Prepro: LFMIVP.F \\ ===== Availability ===== |Plane stress state| YES | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| YES | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 198 | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (2I5) ^^ |IDDL|DDL number (3 = water, 4 = air, 5 = temperature, in 2D case)| |:::|DDL number (4 = water, 5 = air, 6 = temperature, in 3D case)| |ISRW|Formulation index for retention curve $S_{rw}$| ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |COEFK|K penalty coefficient| |ALPHA|Mass transfer coefficient $\left[m/s\right]$| |PG0|Definition gas pression $\left[Pa\right]$| |T0|Definition temperature pression $\left[ K\right]$| |L|Latent heat of the liquid $\left[ J/kg\right]$| |BETA|Convective heat transfer coefficient| ^ Line 2 (6G10.0) ^^ |CSR1|1st coefficient of the function $S_{rw}$| |CSR2|2nd coefficient of the function $S_{rw}$| |CSR3|3rd coefficient of the function $S_{rw}$| |CSR4|4th coefficient of the function $S_{rw}$| |SRES|residual saturation degree ( = $S_{res}$)| |SRFIELD|field saturation degree ( = $S_{r,field}$)| |AIREV|air entry value $\left[Pa\right]$| ===== Stresses ===== ==== Number of stresses ==== 3 ==== Meaning ==== |SIG(1)|water output or input flow at the boundary| |SIG(2)|gas output or input flow at the boundary| |SIG(3)|temperature output or input flow at the boundary| ===== State variables ===== ==== Number of state variables ==== 5 ==== List of state variables ==== |Q(1)| = 0 | |Q(2)|porous surface relative humidity| |Q(3)|drying air relative humidity | |Q(4)|total water flow | |Q(5)|evaporation flow | The total water flow boundary condition is expressed as the sum of the seepage flow and vapour exchange flow \[ \vec{q} = \vec{S} + \vec{E} \] A ramp function gives the expression of the seepage liquid flow $\vec{S}$ : \[ \left\{ \begin{array}{l} \vec{S} = K_{pen} . (p_w^f - p_{atm})^2\ \text{if}\ p_w^f \geq p_w^{cav}\ \text{and}\ p_w^f \geq p_{atm}\\ \vec{S} = 0 \ \text{if}\ p_w^f < p_w^{cav}\ \text{or}\ p_w^f < p_{atm} \end{array} \right. \] With $p_w^f$ the pore water pressure in the rock mass formation, $p_w^{cav}$ the water pressure corresponding to the relative humidity in the cavity (using Eq. 10), $p_{atm}$ the atmospheric pressure and $k_{pen}$ a seepage transfer coefficient.\\ The evaporation exchange is expressed as the difference of vapour density between the tunnel atmosphere and rock mass: \[ \vec{E} = \alpha_0 S_{r,w}^f (\rho_v^f - \rho_v^{cav}) \] With $\rho_v^f$ and $\rho_v^{cav}$ vapour density respectively in the formation and in the cavity and $\alpha$ a vapour mass transfer coefficient (that depends on the degree of saturation $S_{r,w}^f$). {{ :laws:evaporation_flow_seepage_flow.png?400 |}} De la même manière, on exprime que l’évaporation en surface dépend des conditions thermiques. Le flux de chaleur $\vec{t}$ de la frontière vers l’extérieur est exprimé par : \[ \vec{t} = L \vec{q} - \beta \left( T_{air} - T_{roche}^\Gamma \right) \] Avec $T_{air}$ et $T_{roche}^\Gamma$ la température respectivement de l’air ambiant et en paroi d’échantillon, $\beta$ un coefficient de transfert de chaleur et $L$ la chaleur latente de vaporisation (= 2500 kJ/kg). Le premier terme correspond à l’énergie consommée pour la vaporisation de l’eau en paroi, tandis que le second terme correspond au flux de chaleur convectif entre l’atmosphère et le milieu poreux.