====== EVP-IRS ====== ===== Description ===== Elastic‑visco‑plastic constitutive law for solid elements at constant temperature ==== The model ==== This law is used for a mechanical analysis of elastic‑visco‑plastic isotropic solids undergoing large strains.\\ Strain‑rate effects and isotropic hardening or recovery are included. ==== Files ==== Prepro: LIRSI.F \\ Lagamine: IRSI2S.F, IRSI2E.F, IRSI2A.F, IRSI3D.F ===== Availability ===== |Plane stress state| YES | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| YES | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 40 | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (2I5) ^^ |NINTV| number of sub‑steps used to integrate numerically the constitutive equation in a time step.| |ICRIFR|= 0 : nothing| |:::|= 1 : fracture criterion is computed| ==== Real parameters ==== ^ Line 1 (7G10.0) ^^ |E| YOUNG’s elastic modulus | |ANU|POISSON’s ratio | |AN|strain rate exponent ($n$)| |B|strain rate coefficient ($B$)| |AM|hardening exponent ($m$)| |H1|hardening coefficient ($H_1$)| |AQ|recovery exponent ($q$)| ^ Line 2 (4G10.0) ^^ |H2|recovery coefficient ($H_2$)| |AKO|initial yield limit ($K_o$)| |ANI|strain exponent $(\bar{\sigma} = C \bar{\varepsilon}^n)$ only for the criterion of fracture| |RHO|specific mass| ===== Stresses ===== ==== Number of stresses ==== = 6 for 3-D state \\ = 4 for the other cases. ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ __For the 3-D state:__ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| __For the other cases:__ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== = 24 ==== List of state variables ==== |Q(1)| = element thickness (t) in plane stress state| |:::| = 1 in plane strain state | |:::| = circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state| |:::| = 0 in 3-D state| |:::|= element thickness (t) in generalized plane state | |Q(2)|current yield limit in tension; its initial value is $K_o$| |Q(3)|hydrostatic stress ($\sigma_m$)| |Q(4)|equivalent inelastic strain ($\bar{\varepsilon}^p$)| |Q(5)|plastic work per unit| |Q(6)| total strain energy per unit volume| |Q(8)$\rightarrow$Q(11)| failure criteria| |Q(12)|equivalent stress ($\bar{\sigma}$)| |Q(13)|localisation indicator (Vilotte) : increment of| |Q(14)|cumulated $\varepsilon_{eq}$| |Q(15)|$\varepsilon_{xx}$| |Q(16)|$\varepsilon_{yy}$| |Q(17)|$\varepsilon_{zz}$| |Q(18)|$\varepsilon_{xy}$| |Q(19)|$\dot{\varepsilon}_{eq}$| |Q(24)|actualised specific mass|