Elastic‑visco‑plastic constitutive law for solid elements at variable temperature
This law is used for a mechanical analysis of elastic‑visco‑plastic isotropic solids undergoing large strains.
Strain‑rate effects and isotropic hardening are included.
The temperature dependence of the material parameters is taken into account.
Prepro: LGROB.F
Lagamine: GROB2E.F (2D), GROB3D.F (3D)
Plane stress state | NO |
Plane strain state | YES |
Axisymmetric state | NO |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 45 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (I5) | |
---|---|
NINTV | number of sub‑steps used to integrate numerically the constitutive equation in a time step. |
Line 1 (7G10.0/7G10.0) | |
---|---|
EO | reference YOUNG's elastic modulus ($E_o$) |
BE | corresponding temperature coefficient ($b_E$) |
ANUO | reference POISSON's ratio ($\nu$) |
BNU | corresponding temperature coefficient ($b_{<}$) |
ANO | reference strain rate exponent ($n_o$) |
BO | reference strain rate coefficient ($B_o$) |
Q | corresponding temperature coefficient ($Q$) |
AMO | reference hardening exponent ($m_o$) |
AKSO | reference hardening saturation coefficient ($K_{so}$) |
GAMMAO | reference hardening parameter ($\gamma_o$) |
TETAO | reference hardening coefficient ($\theta_o$) |
BTETA | corresponding temperature coefficient ($b_{\theta}$) |
AKOO | reference initial yield limit ($K_{oo}$) |
BK | corresponding temperature coefficient ($b_K$) |
= 6 for 3-D state
= 4 for the other cases.
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{xz}$ |
SIG(6) | $\sigma_{yz}$ |
For the other cases:
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{xy}$ |
SIG(4) | $\sigma_{zz}$ |
=3
Q(1) | = element thickness (t) in plane stress state |
= 1 in plane strain state | |
= circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state | |
= 0 in 3-D state | |
= element thickness (t) in generalized plane state | |
Q(2) | current yield limit in tension; its initial value is $K_o\exp(-b_K T)$ where $T$ is the absolute temperature in $K$ |
Q(3) | equivalent inelastic strain ($\bar{\varepsilon}^p$) |