====== EVP-NH ====== ===== Description ===== ELASTO VISCO PLASTIC CONSTITUTIVE LAW FOR SOLID ELEMENTS AT VARIABLE TEMPERATURE (Norton-Hoff)\\ Implemented by: Pascon F (1998), Charles JF (1997 - 1999)\\ Project: continuous casting research for ARBED (RW2748)\\ ==== The model ==== Coupled dynamic recrystallisation-thermo-mechanical analysis of elasto-visco-plastic solids undergoing large strains.\\ JAUMANN stress rate is used\\ __IANA= 2, 3, 5:__\\ See intermediate report RW2748 (1, 8, 17, 24) and intermediate report of April 1998 \\ For details on equations used in analytical compliance matrix computation, see appendix D of April 1998\\ __IANA= 4:__\\ See intermediate report RW2748 (17, 24) ==== Files ==== Prepro: LNHC2.F \\ Lagamine: NHIC2E.F (IANA= 2, 3 or 5) or NHIC3D.F (IANA= 4) ==== Subroutines ==== ^File^Subroutine^Description^ |CALMAT.F | CALMAT|Computes material data at temperature T | |NHIMAT.F |CALSIGY | | |:::|MATMSGS2|Used for analytical compliance matrix| |:::|MATMSGL2|Used for analytical compliance matrix| |:::|MATMSGS|Used for analytical compliance matrix (3D case)| |:::|MATMSGL|Used for analytical compliance matrix (3D case)| |:::|EIGVECT| Computes eigen vectors| |:::|CMATINV| Inverse complex matrix| |:::|VGMOYEN |Computes the constant velocities gradient matrix | |CALPNH.F| CALPNH|Computes $K_0, P_1, P_2, P_3, P_4$ at temperature T | |RECRYDYN.F|RECRYDYN |Dynamic recrystallization computation | ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| YES | ===== Input file ===== ^ 1 Line (2I5, 60A1)^^ |IL|Law number| |ITYPE| 270| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ 1 Line (7I5) ^^ |NINTV| number of sub-steps used to integrate numerically the constitutive equation in a time step. \\ If NINTV < 0 or = 0, then the number of sub-steps will be computed automatically| |NTEMP| number of temperatures at which material data (E, ANU and ALPHA) are given| |IDYN| = 1: if recrystallisation computation| |:::| = 0: else| |ICHP2| = 2: if parameters $K_0, P_1, P_2, P_3, P_4$ are given at several temperatures| |:::| = 1: if $P_2= e^{-(\frac{T-C_4}{C_5})}.T^{C_6}$ (**__only if nodes temperature in Kelvin !!!__**)| |:::| any other value if $P_2= (\frac{C_4}{T})^2 - \frac{C_5}{T} + C_6$ (**__only if nodes temperature in Kelvin !!!__**)| |IALG| = 1: if enthalpic formulation for ALPHA| |:::| = 0: if classical formulation for ALPHA | |MAXITER| maximum number of iteration in elastic field \\ ≤ 0: set default value = 50 | |NTEMP2| number of temperatures at which parameters $K_0, P_1, P_2, P_3, P_4$ are given (only if ICHP2 = 2)| ==== Real parameters ==== ^ 1 Line repeated NTEMP times (4G10) \\ Note: parameters introduced by increasing temperature order^^ |T| Temperature| |E| YOUNG’s elastic modulus at temperature T| |ANU| POISSON’s ratio at temperature T| |ALPHA| Thermal expansion coefficient (α) at temperature T. \\ Even if IALG = 1, ALPHA must be introduced at temperature T. \\ In this case, $\int_0^T\alpha(T).dT$ will be automatically computed | ^ If ICHP2 = 2: 1 Line repeated NTEMP2 times (6G10) \\ Note: parameters introduced by increasing temperature order^^ |T| Temperature| |$K_0$| See further| |$P_1$| See "Information about EVP-NH"| |$P_2$| | |$P_3$| | |$P_4$| | ^ If ICHP2 ≠ 2: 2 Lines (5G10/4G10) (**__only if nodes temperature in Kelvin !!!__**) ^^ |$AK_0$| | |$C_1$| See further| |$C_2$| See "Information about EVP-NH"| |$C_3$| | |$C_4$| | |$C_5$| | |$C_6$| | |$P_3$| (be careful: 0 < $P_3$ < 1)| |$P_4$| | ^ 1 Line (4G10) ^^ |TQ| Taylor-Quinney’s coefficient. Absolute value between 0 and 1 :\\ < 0: when thermal analysis within a semi-coupled analysis\\ > 0: for other cases (total coupled analysis or mechanical analysis within a semi-coupled analysis)| |PRECVG| precision in VGMOY calculation (3D state only)\\ ≤ 0: set default value = $1.10^{-5}$| |PRECELA| precision in elastic computation\\ ≤ 0: set default value = $1.10^{-4}$| |EPSINC| increment of deformation for the automatic computation of NINTV\\ ≤ 0: set default value = $1.10^{-3}$| ^ If IDYN = 1: 4 Lines (3I5/4G10.0/4G10.0/2G10.0) ^^ |ICOUPL| = 1: the recrystallisation is coupled | |:::| = 0: the recrystallisation is uncoupled | |ITYPEPS| = 0: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1. Q_4^{Q_2} . [LN(Zener)]^{Q_3}$ | |:::| = 1: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.ATAN[Q_3.[LN(Zener)-Q_2]]+ Q_4$ | |:::| = 2: the equations defining the beginning and the end of the recryst. have the form : $\varepsilon= Q_1.[LN(Zener)]^{Q_2}+ Q_3.LN(Zener) + Q_4$ | |NSSMAX| used if ICOUPL = 1: Maximum number of sub-structures\\ The precision on the recryst. fraction is 1/NSSMAX | |$Q_1$| parameters for the __beginning__ of the recrystallisation: $\varepsilon_c$ | |$Q_2$| parameters for the __beginning__ of the recrystallisation: $\varepsilon_c$ | |$Q_3$| parameters for the __beginning__ of the recrystallisation: $\varepsilon_c$ | |$Q_4$| parameters for the __beginning__ of the recrystallisation: $\varepsilon_c$ | |$Q_1$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | |$Q_2$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | |$Q_3$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | |$Q_4$| parameters for the __end__ of the recrystallisation: $\varepsilon_s$ | |ACTIV| Activation energy for Zener computation : $Z=\dot{\varepsilon}.EXP(\frac{ACTIV}{R.T})$ \\ with T the temperature and R the Boltzman gas constant| |EXPO| Exponent for the AVRAMI law : $X= 1- EXP[-3.(\frac{\bar{\varepsilon}-\varepsilon_c}{\varepsilon_s-\varepsilon_c})^{expo}]$ | __**NOTE:**__ ISTRA(3) parameter of the execution file:\\ **Units:** \\ = 0: analytical compliance matrix used (default value) \\ = 1: perturbation method \\ **Tens:** \\ = 0: mean velocities gradient (default value) \\ = 1: initial velocities gradient \\ **Hundreds:** \\ = 0: yield limit given by intersection between N-H curve and Young’s straight line \\ = 1: yield limit given by K0 (given parameter – see below) \\ \\ __**Information about EVP-NH:**__ \\ For the 1D case, we have: \\ $\bar{\sigma}= A. K_0. \bar{\varepsilon}^{P_4}. exp(-P_1.\bar{\varepsilon}). P_2. \sqrt{3}. (\sqrt{3}. \bar{\dot{\varepsilon}})^{P_3}$ with $P_1 \geq 0$ \\ The parameters $K_0, P_1, P_2, P_3, P_4$ can be given at several temperatures (ICHP2 = 2) \\ Otherwise, if ICHP2 ≠ 2: (see the law in section: "integer parameters") \\ $P_1= (\frac{T}{C_1})^{C_2} + C_3$ \\ $P_2= f(C_4, C_5, C_6, T)$ \\ $P_3, P_4, K_0= constants$ \\ ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 27 ==== List of state variables ==== |Q(1)|thickness| |Q(2)|equivalent stress (effective if icoupl=1)| |Q(3)|equivalent strain| |Q(4)|equivalent strain rate| |Q(5)|instantaneous thermal flow (effective if icoupl=1)| |Q(6)|plastic dissipation (effective if icoupl=1)| |Q(7)|ΔT| |Q(8)|RHOC capacity| |Q(9)|LN (ZENER)| |Q(10)|recrystallised fraction since the beginning of the simulation| |Q(11)|recrystallised fraction on this step| |Q(12)|elastic part on this step – in percent \\ (>0 : loading ; <0 : unloading) (effective if icoupl=1)| |Q(13)|number of sub-structures| |Q(14)|volumic fraction of the unrecrystallised sub-structure| |Q(15)|effective equivalent strain| |Q(16)|equivalent strain standard deviation| |Q(17)|= 0 if always elastic state since the beginning| |:::| = 1 if any previous step has been performed in visco-plastic domain| |Q(18)|recrystallised fraction during previous step| |Q(19)|| |Q(20)|| |Q(21)|| |Q(22)|| |Q(23)|| |Q(24)|| |Q(25)|triaxiality (BLZ2T)| |Q(26)|shape parameter of the element (BLZ2T)| |Q(27)|Remeshing parameter (BLZ2T)|