====== EP-TSOIL ====== ===== Description ===== Cap model : elasto-plastic constitutive law for solid elements at constant temperature with thermoplasticity (A thermomechanical model of clays, CUI et al., 2000). ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LTSOIL.F \\ Lagamine: TSOIL2EA.F, TSOIL3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 169| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (14I5) ^^ |NINTV| > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : NINTV will be calculated in the law with DIV=$1.10^{-5}$ | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq$ 0 : Use of effective stresses in the constitutive law. See [[appendices:a8|appendix 8]] | |IELA| = 0 : Linear elasticity | |:::| > 0 : Non-linear elasticity | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Not used : Associated plasticity | |ITRACT| = 0 : No traction limitation | |:::| <> 0 : Traction stresses limitation | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined with PHMPS | |ICBIF| Computation indice of bifurcation criterion | |:::| = 0 : Non computed | |:::| = 1 : Computed (plane strain state only) | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | |IPCONS| = 0 : Definition of pre-consolidation pressure | |:::| <> 0 : Definition of OCR | |ILY| = 0 : Evolution of the pre-consolidation pressure with temperature (ENPC, LY curve) \[p'_{cT} = p'_{c_0T_0}\exp(-\alpha_0\Delta T)\] | |:::| = 1 : Evolution of the pre)consolidation pressure with temperature (ACMEG-T) \[p'_{cT} = p'_{c_0T_0}\left[1-\gamma_T\log\left(\frac{T}{T_0}\right)\right]\] | ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |HARD| Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0| Pre-consolidation pressure (if PCONS0=0) | |OCR| Over Consolidation Ratio (if PCONS0$\neq$0, see section 6.5) | |AI1MIN| Minimum value of I$_{sigma}$ for non-linear elasticity | |PSIC| Coulomb's angle (in degrees) for compressive paths | |PSIE| Coulomb's angle (in degrees) for extensive paths | |PHMPS| Van Eekelen exponent (default value=-0.229) | ^ Line 3 (6G10.0) ^^ |PHIC0| Initial Coulomb's angle (in degrees) for compressive paths | |PHICF| Final Coulomb's angle (in degrees) for compressive paths | |BPHI| Only if there is hardening/softening | |PHIE0| Initial Coulomb’s angle (in degrees) for extensive paths | |PHIEF| Final Coulomb’s angle (in degrees) for extensive paths (iff ILODEF = 2) | |AN| Van Eekelen exponent (default value=-0.229) | ^ Line 4 (4G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening | |TRACTION| Limit of the traction stress (only if ITRACT$\neq$0) | ^ Line 5 (4G10.0) ^^ |POROS| Initial soil porosity ($n_0$) | |RHO| Specific mass | |DIV| Parameter for the computation of NINTV in the law (for NINTV = 0 only) | |BIOPT| Bifurcation computation parameter | ^ Line 6 (7G10.0) ^^ |ALPHA2| Volumetric thermal expansion coefficient of the solid | |ALPHA0| Shape parameter for LY curve (ILY=0 : formulation ENPC, for ACMEG-T see below) | |BETA0| Hardening parameter for TY curve (1/Pa) | |TC| Critical temperature (TY curve) (°K) | |T0| Initial temperature (TY curve) (°K) \[TY \equiv T_{cT} - \left[(T_c-T_0)\exp(-\beta p')+T_0\right] = 0\] | ^ Line 7 (4G10.0) ^^ |C1| Parameter for HC curve | |C2| Parameter for HC curve | |A parameter| Parameter for the definition of the thermal volumetric plastic strain | |GAMA| Shape parameter for LY curve according ACMEG-T (ILY = 1) \[HC\equiv p'-c_1 p'_{c0}\exp(c_2\Delta T) = 0\] | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 24 in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Actualised specific mass | |Q(3)| = 0 if the current state is elastic | |:::| = 1 if the current state is elasto-plastic (Friction mechanism) | |:::| = 2 if the current state is elasto-plastic (Pore collapse mechanism) | |:::| = 3 if the current state is elasto-plastic (Traction mechanism) | |:::| = 4 if the current state is elasto-plastic (Friction + pore mechanisms) | |:::| = 5 if the current state is elasto-plastic (Friction + traction mechanisms) | |Q(4)| Plastic work per unit volume ($W^p$) | |Q(5)| Actualised value of porosity | |Q(6)| Equivalent strain n°1 : $\varepsilon_{eq1}=\int \Delta\dot{\varepsilon}_{eq}\;\Delta t$ | |Q(7)| Updated value of pre-consolidation pressure $p_0$ | |Q(8)| Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1 = \dfrac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)| Z deformation | |Q(12)| XY deformation | |Q(13)| Volumetric strain | |Q(14)| Deviatoric strain | |Q(15)| Actualised value of cohesion | |Q(16)| Actualised value of frictional angle in compression path ($\phi_C$) | |Q(17)| Actualised value of frictional angle in extension path ($\phi_E$) | |Q(18)| Apex criterion | |Q(19)| Actualised value of BETA | |Q(20)| Actualised value of ALPHAP | |Q(21)| Actualised value of temperature | |Q(22)| ITESTALPHA : Variable for the calculation of ALPHAP | |Q(23)| Actualised value of the pre-consolidation pressure as a function of the temperature (Pa) | |Q(24)| Number of sub-intervals used for the integration | |Q(25)| KSUMMITER | |Q(26)| K (Pa) | |Q(27)| G (Pa) | |Q(28)$\rightarrow$Q(39)| Reserved for bifurcation | ==== Elastic forms ==== __IELA = 0__ : Linear elasticity \\ |E_PAR1| E: Young's Elastic modulus | |E_PAR2| ANU: Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| ECRO: Hardening parameter | __IELA = 1__ : Non-linear elasticity \\ |E_PAR1| KAPPA: Elastic slope in oedometer path | |E_PAR2| ANU: Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| LAMBDA: Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 2__ : Non-linear elasticity \\ |E_PAR1| KAPPA: Elastic slope in oedometer path | |E_PAR2| G0: Shear modulus | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| LAMBDA: Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 3__ : Non-linear elasticity \\ |E_PAR1| KAPPA: Elastic slope in oedometer path | |E_PAR2| K0: Minimum value of the bulk modulus | |E_PAR3| G0: Shear modulus | |E_PAR4| ALPHA2 | |HARD| LAMBDA: Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 4__ : Non-linear elasticity \\ |E_PAR1| K0: Minimum value of the bulk modulus | |E_PAR2| n: n parameter | |E_PAR3| G0: Shear modulus | |E_PAR4| Patm: Atmospheric pressure | |HARD| | ECRO = HARD __IELA = 5__ : Non-linear elasticity \\ |E_PAR1| $\nu$ : Poisson’s ratio | |E_PAR2| n: n parameter | |E_PAR3| G0: Shear modulus | |E_PAR4| Patm: Atmospheric pressure | |HARD| | ECRO = HARD ==== IPCONS parameter ==== __IPCONS = 0__ : $p_0$ = PCONS0\\ __IPCONS = 1__ : $p_0$ = $\sigma_v$ . OCR\\ __IPCONS = 2__ : $p_0$ = $p_0$($\sigma$, cohesion, $\phi$) . OCR\\ Where : $p_0$($\sigma$, cohesion, $\phi$) = $\left[\dfrac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3$