====== EP-SUCTSOL ====== ===== Description ===== Cap model : élastomère-plastic constitutive law for solid elements at constant temperature with effect of suction and temperature. ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LSUCT.F \\ Lagamine: SUCT2EA.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES| |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 68| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (13I5) ^^ |NINTV| > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : NINTV will be calculated in the law with DIV=$5.10^{-3}$ | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq$ 0 : Use of effective stresses in the constitutive law. See [[appendices:a8|appendix 8]] | |IELA| = 0 : Linear elasticity | |:::| > 0 : Non-linear elasticity | |IELAS|= 0 : Constant KAPPAS | |:::| > 0 : Variable KAPPAS | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Not used : Associated plasticity | |ITRACT| = 0 : No traction limitation | |:::| $\neq$ 0 : Traction stresses limitation | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined with PHMPS | |ICBIF| Computation indice of bifurcation criterion | |:::| = 0 : Non computed | |:::| = 1 : Computed (plane strain state only) | |KMETH|= 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | |IPCONS| = 0 : Definition of pre-consolidation pressure | |:::| $\neq$ 0 : Definition of OCR | |IDUJE| = 1 : Use Hueckel's thermal soften function to perform the calculation | |:::| = 2 : Use Yujun C. exponential formulation (need to be check further) | |ISR| Index for calculate the saturation | ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |HARD| Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0| Pre-consolidation pressure (if PCONS0=0) | |OCR| Over Consolidation Ratio (if PCONS0$\neq$0, see section 6.5) | |AI1MIN| Minimum value of I$_{sigma}$ for non-linear elasticity | |PSIC| Coulomb's angle (in degrees) for compressive paths | |PSIE| Coulomb's angle (in degrees) for extensive paths | |PHMPS| Van Eekelen exponent (default value=-0.229) | ^ Line 3 (6G10.0) ^^ |PHIC0| Initial Coulomb's angle (in degrees) for compressive paths | |PHICF| Final Coulomb's angle (in degrees) for compressive paths | |BPHI| Only if there is hardening/softening | |PHIE0| Initial Coulomb’s angle (in degrees) for extensive paths | |PHIEF| Final Coulomb’s angle (in degrees) for extensive paths (iff ILODEF = 2) | |AN| Van Eekelen exponent (default value=-0.229) | ^ Line 4 (4G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening | |TRACTION| Limit of the traction stress (only if ITRACT$\neq$0) | ^ Line 5 (3G10.0) ^^ |POROS| Initial soil porosity ($n_0$) | |RHO| Specific mass | |DIV| Parameter for the computation of NINTV in the law (for NINTV = 0 only) | ^ Line 6 (7G10.0) ^^ |S0| Yield limit in term of suction (SI curve) | |PCrel| Relative Reference pressure PCONS0/PC for the definition of the LC curve | |RRATIO| | |BETA| | |LAMBDA-S| Plastic suction coefficient | |KAPPA-S| Elastic suction coefficient | |PATM| Atmospheric pressure | ^ Line 7 (3G10.0) ^^ |k| | |AKAPPAS1| First parameter of KAPPAS formulation | |AKAPPAS2| Second parameter of KAPPAS formulation | ^ Line 8 (5G10.0) ^^ |PARAA1| 1st parameter for calculating the thermal soften function | |PARAA2| 2nd parameter for calculating the thermal soften function \[p_0^*\left(\varepsilon_{\nu}^p\;,\;\Delta T\right) = p_0^*\left(\varepsilon_{\nu}^p\right)+A(\Delta T)\]\[A(\Delta T) = a_1\; \Delta T + a_2\;\Delta T\;\rvert\Delta T\rvert\]| |ALPHA2| Parameter for calculating the thermal elastic strain \[\dot{\varepsilon}^{e,T}=\alpha_2\;\dot{T}\]| |TEMPR| Reference temperature | |TEMP0| Yield limit temperature | ^ Line 9 (4G10.0) ^^ |SRES| Residual saturation | |PSUCA| Parameter to calculate the variation of Suction Increase | |PSUCB| Parameter to calculate the variation of Suction Increase | |KPARAM| Parameter to calculate the variation of Suction Increase | ^ Line 10 (8G10.0) ^^ |CSW1| 1st coefficient of the function $S_w$ | |CSW2| 2nd coefficient of the function $S_w$ | |CSW3| 3rd coefficient of the function $S_w$ | |ERATIO| Initial Void Ratio | |CSW4| 4th coefficient of the function $S_w$ | |SRES| Residual saturation degree (=$S_{res}$) | |SRFIELD| Field saturation degree (=$S_{r,field}$) | |AIREV| Air entry value [Pa] | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 24 : in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Actualised specific mass | |Q(3)| = 0 if the current state is elastic | |:::| = 1 if the current state is elasto-plastic (Friction mechanism) | |:::| = 2 if the current state is elasto-plastic (Pore collapse mechanism) | |:::| = 3 if the current state is elasto-plastic (Traction mechanism) | |:::| = 4 if the current state is elasto-plastic (Friction + pore mechanisms) | |:::| = 5 if the current state is elasto-plastic (Friction + traction mechanisms) | |Q(4)| Actualised value of temperature | |Q(5)| Actualised value of porosity | |Q(6)| Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$ | |Q(7)| Updated value of preconsolidation pressure $p_0$ | |Q(8)| Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)|Z deformation | |Q(12)| XY deformation | |Q(13)| Volumetric strain | |Q(14)| Deviatoric strain | |Q(15)| Actualised value of cohesion | |Q(16)| Actualised value of frictional angle in compression path ($\phi_C$) | |Q(17)| Actualised value of frictional angle in extension path ($\phi_E$) | |Q(18)| Apex criterion | |Q(19)| Actualised value of ALAMBDAS | |Q(20)| Actualised value of AKAPPAS | |Q(21)| Actualised value of $S_0$ | |Q(22)| Number of sub-intervals used for the integration | |Q(23)| Number of iteration used for the integration | |Q(24)| Memory of localisation calculated during the re-meshing | |Q(25)$\rightarrow$Q(36)| Reserved for bifurcation | ==== Hardening forms ==== __ITYLA = 2__ : Volumetric strain hardening \[dp_0 = -ECRO\;p_0\;\varepsilon_{v}^p\] where the sign is dependent on the consolidation stress and softening is possible. ==== Elastic forms ==== __IELA = 0__ : Linear elasticity \\ |E_PAR1| = E : Young's Elastic modulus | |E_PAR2| = ANU : Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| = ECRO : Hardening parameter | __IELA = 1__ : Non-linear elasticity \\ |E_PAR1| = KAPPA : Elastic slope in oedometer path | |E_PAR2| = ANU : Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| = LAMBDA : Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 2__ : Non-linear elasticity \\ |E_PAR1| = KAPPA : Elastic slope in oedometer path | |E_PAR2| = G0 : Shear modulus | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| = LAMBDA : Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 3__ : Non-linear elasticity \\ |E_PAR1| = KAPPA : Elastic slope in oedometer path | |E_PAR2| = K0 : Minimum value of the bulk modulus | |E_PAR3| = G0 : Shear modulus | |E_PAR4| = ALPHA2 | |HARD| = LAMBDA : Plastic slope in oedometer path | \[ECRO = \frac{1+e_0}{\lambda-\kappa}\] __IELA = 4__ : Non-linear elasticity \\ |E_PAR1| = K0: Minimum value of the bulk modulus | |E_PAR2| = n : n parameter | |E_PAR3| = G0 : Shear modulus | |E_PAR4| = Patm : Atmospheric pressure | |HARD| | ECRO = HARD __IELA = 5__ : Non-linear elasticity \\ |E_PAR1| = $\nu$ : Poisson’s ratio | |E_PAR2| = n : n parameter | |E_PAR3| = G0 : Shear modulus | |E_PAR4| = Patm : Atmospheric pressure | |HARD| | ECRO = HARD ==== IPCONS parameter ==== __IPCONS = 0__ : $p_0$ = PCONS0\\ __IPCONS = 1__ : $p_0$ = $\sigma_v$ . OCR\\ __IPCONS = 2__ : $p_0$ = $p_0$($\sigma$, cohesion, $\phi$) . OCR\\ Where : $p_0$($\sigma$, cohesion, $\phi$) = $\left[\dfrac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3$