User Tools

Site Tools


laws:epsucsol

This is an old revision of the document!


EP-SUCSOL

Description

Cap model : elasto-plastic constitutive law for solid elements at constant temperature with effect of suction.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LSUC.F
Lagamine: SUC2EA.F, SUC3D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 90
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (11I5)
NINTV $\geq 0$ : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law with DIV$=5.10^{-3}$
ISOL = 0 : Use of total stresses in the constitutive law
$\neq 0$ : Use of effective stresses in the constitutive law (see Appendix 8)
IELA = 0 : Linear elasticity
> 0 : Non-linear elasticity
IELAS = 0 : Constant KAPPAS
> 0 : Variable KAPPAS
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : circle in the deviatoric plane
= 2 : smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : associated plasticity
ITRACT = 0 : No traction limitation
<> 0 : Traction stresses limitation
IECPS = 0 : $\Psi$ is defined with PSIC and PSIE
= 1 : $\Psi$ is defined with PHMPS
ICBIF Computation indice of bifurcation criterion
= 0 : Non computed
= 1 : Computed (plane strain state only)
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (default value)
IPCONS = 0 : Definition of pre-consolidation pressure
<> 0 : Definition of OCR

Real parameters

Line 1 (5G10.0)
E_PAR1 First elastic parameter 
E_PAR2 Second elastic parameter 
E_PAR3 Third elastic parameter 
E_PAR4 Fourth elastic parameter 
HARD Hardening parameter
Line 2 (6G10.0)
PCONS0 Pre-consolidation pressure (if IPCONS=0)
OCR Over Consolidation Ration (if IPCONS<>0, see section 6.5 !!!!!!!)
AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
PSIC Coulomb's angle (in degrees) for compressive paths
PSIE Coulomb's angle (in degrees) for extensive paths
PHMPS Van Eekelen exponent (default value = -0.229)
Line 3 (6G10.0)
PHIC0 Initial Coulomb's angle (in degrees) for compressive paths
PHICF Final Coulomb's angle (in degrees) for compressive paths
BPHI Only if there is hardening/softening
PHIE0 Initial Coulomb's angle (in degrees) for extensive paths
PHIEF Final Coulomb's angle (in degrees) for extensive paths (iff ILODEF=2)
AN Van Eekelen exponent (default value = -0.229)
Line 4 (4G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening
TRACTION Limit of the traction stress (only if TRACT<>0)
Line 5 (3G10.0)
POROS Initial soil porosity ($n_0$)
RHO Specific mass 
DIV Parameter for the computation of NINTV in the law (for NINTV=0 only)
Line 6 (7G10.0)
S0 Yield limit in term of suction (SI curve)
PCrel Relative Reference pressure PCONS0/PC for the definition of the LC curve
RRATIO
BETA
LAMBDA-S Plastic suction coefficient 
KAPPA-S Elastic suction coefficient
PATM Atmospheric pressure
Line 7 (3G10.0)
k Evolution of cohesion with suction ($c(s) = c(0)+k.s$)
AKAPPAS1 First parameter of KAPPAS formulation
AKAPPAS2 Second parameter of KAPPAS formulation

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

39 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
28 in all the other cases

List of state variables

Q(1) = 1 in plane strain state
= circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) actualised specific mass
Q(3) = 0 if the current state is elastic
= 1 if the current state is elasto-plastic (Friction mechanism) 
= 2 if the current state is elasto-plastic (Pore collapse mechanism) 
= 3 if the current state is elasto-plastic (Traction mechanism) 
= 4 if the current state is elasto-plastic (Friction + pore mechanisms)
= 5 if the current state is elasto-plastic (Friction + traction mechanisms) 
Q(4) Plastic work per unite volume ($W^p$)
Q(5) Actualised value of porosity
Q(6) equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$
Q(7) Updated value of pre-consolidation pressure $p_0$
Q(8) equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) Deviatoric strain
Q(15) Actualised value of cohesion
Q(16) Actualised value of frictional angle in compression path ($\phi_C$)
Q(17) Actualised value of frictional angle in extension path ($\phi_E$)
Q(18) Apex criterion
Q(19) Actualised value of ALAMBDAS
Q(20) Actualised value of AKAPPAS
Q(21) Actualised value of $S_0$ 
Q(22) Absolute value of reference pressure $P_C$
Q(23) Number of sub-intervals used for the integration
Q(24) Number of iterations used for the integration
Q(25) Cubic modulus
Q(26) Shear modulus
Q(27) Memory of localisation calculated during the re-meshing
Q(28)$\rightarrow$Q(39) Reserved for bifurcation

Hardening forms

ITYLA = 2 Volumetric strain hardening
$dp_0 = -ECRO\;p_0\varepsilon_v^p$ 
Sign dependent on the consolidation stress
Softening is possible

Elastic forms

IELA = 0 Linear elasticity
E_PAR1 = E : Young's Elastic modulus
E_PAR2 = ANU : Poisson's ratio
E_PAR3 : not used
E_PAR4 : not used
HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$
IELA = 1 Non-linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = ANU : Poisson's ratio
E_PAR3 : not used
E_PAR4 : not used
HARD = LAMBDA : Plastic slope in oedometer path
IELA = 2 Non-linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = G0 : Shear modulus
E_PAR3 : not used
E_PAR4 : not used
HARD = LAMBDA : Plastic slope in oedometer path
IELA = 3 Non-linear elasticity
E_PAR1 = KAPPA : Elastic slope in oedometer path
E_PAR2 = K0 : Minimum value of the bulk modulus
E_PAR3 = G0 : Shear modulus
E_PAR4 = ALPHA2
HARD = LAMBDA : Plastic slope in oedometer path
IELA = 4 Non-linear elasticity
E_PAR1 = K0 : Minimum value of the bulk modulus
E_PAR2 = n : $n$ parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$
IELA = 5 Non-linear elasticity
E_PAR1 = $\nu$ (ANU ???) : Poisson's ratio
E_PAR2 = n : $n$ parameter
E_PAR3 = G0 : Shear modulus
E_PAR4 = Patm : Atmospheric pressure
HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$

IPCONS Parameters

IPCONS = 0 $p_0$ = PCONS0
IPCONS = 1 $p_0$ = $\sigma_v.$OCR
IPCONS = 2 $p_0$ = $p_0(\sigma, \text{cohesion}, \phi).$OCR

where $p_0(\sigma, \text{cohesion}, \phi) = \left[\frac{-II_{\sigma}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi)}\right)}-I_{\sigma}\right]/3 $

laws/epsucsol.1568978782.txt.gz · Last modified: 2020/08/25 15:35 (external edit)