====== EP-SUCSOL ====== ===== Description ===== Cap model : elasto-plastic constitutive law for solid elements at constant temperature with effect of suction. ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LSUC.F \\ Lagamine: SUC2EA.F, SUC3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 90| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (11I5) ^^ |NINTV| $\geq 0$ : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : NINTV will be calculated in the law with DIV$=5.10^{-3}$ | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq 0$ : Use of effective stresses in the constitutive law (see [[appendices:a8|Appendix 8]]) | |IELA| = 0 : Linear elasticity | |:::| > 0 : Non-linear elasticity | |IELAS| = 0 : Constant KAPPAS | |:::| > 0 : Variable KAPPAS | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : circle in the deviatoric plane | |:::| = 2 : smoothed irregular hexagon in the deviatoric plane | |ILODEG| Not used : associated plasticity | |ITRACT| = 0 : No traction limitation | |:::| <> 0 : Traction stresses limitation | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined with PHMPS | |ICBIF| Computation indice of bifurcation criterion | |:::| = 0 : Non computed | |:::| = 1 : Computed (plane strain state only) | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (default value) | |IPCONS| = 0 : Definition of pre-consolidation pressure | |:::| <> 0 : Definition of OCR | ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |HARD| Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0| Pre-consolidation pressure (if IPCONS=0) | |OCR| Over Consolidation Ration (if IPCONS<>0, see section 6.5 !!!!!!!) | |AI1MIN| Minimum value of $I_{\sigma}$ for non-linear elasticity | |PSIC| Coulomb's angle (in degrees) for compressive paths | |PSIE| Coulomb's angle (in degrees) for extensive paths | |PHMPS| Van Eekelen exponent (default value = -0.229) | ^ Line 3 (6G10.0) ^^ |PHIC0| Initial Coulomb's angle (in degrees) for compressive paths | |PHICF| Final Coulomb's angle (in degrees) for compressive paths | |BPHI| Only if there is hardening/softening | |PHIE0| Initial Coulomb's angle (in degrees) for extensive paths | |PHIEF| Final Coulomb's angle (in degrees) for extensive paths (iff ILODEF=2) | |AN| Van Eekelen exponent (default value = -0.229) | ^ Line 4 (4G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening | |TRACTION| Limit of the traction stress (only if TRACT<>0) | ^ Line 5 (3G10.0) ^^ |POROS| Initial soil porosity ($n_0$) | |RHO| Specific mass | |DIV| Parameter for the computation of NINTV in the law (for NINTV=0 only) | ^ Line 6 (7G10.0) ^^ |S0| Yield limit in term of suction (SI curve) | |PCrel| Relative Reference pressure PCONS0/PC for the definition of the LC curve | |RRATIO| | |BETA| | |LAMBDA-S| Plastic suction coefficient | |KAPPA-S| Elastic suction coefficient | |PATM| Atmospheric pressure | ^ Line 7 (3G10.0) ^^ |k| Evolution of cohesion with suction ($c(s) = c(0)+k.s$)| |AKAPPAS1| First parameter of KAPPAS formulation | |AKAPPAS2| Second parameter of KAPPAS formulation | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 39 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 28 in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| = circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| actualised specific mass | |Q(3)| = 0 if the current state is elastic | |:::| = 1 if the current state is elasto-plastic (Friction mechanism) | |:::| = 2 if the current state is elasto-plastic (Pore collapse mechanism) | |:::| = 3 if the current state is elasto-plastic (Traction mechanism) | |:::| = 4 if the current state is elasto-plastic (Friction + pore mechanisms) | |:::| = 5 if the current state is elasto-plastic (Friction + traction mechanisms) | |Q(4)| Plastic work per unite volume ($W^p$) | |Q(5)| Actualised value of porosity | |Q(6)| equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$ | |Q(7)| Updated value of pre-consolidation pressure $p_0$ | |Q(8)| equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)| Z deformation | |Q(12)| XY deformation | |Q(13)| Volumetric strain | |Q(14)| Deviatoric strain | |Q(15)| Actualised value of cohesion | |Q(16)| Actualised value of frictional angle in compression path ($\phi_C$) | |Q(17)| Actualised value of frictional angle in extension path ($\phi_E$) | |Q(18)| Apex criterion | |Q(19)| Actualised value of ALAMBDAS | |Q(20)| Actualised value of AKAPPAS | |Q(21)| Actualised value of $S_0$ | |Q(22)| Absolute value of reference pressure $P_C$ | |Q(23)| Number of sub-intervals used for the integration | |Q(24)| Number of iterations used for the integration | |Q(25)| Cubic modulus | |Q(26)| Shear modulus | |Q(27)| Memory of localisation calculated during the re-meshing | |Q(28)$\rightarrow$Q(39)| Reserved for bifurcation | ==== Hardening forms ==== |ITYLA = 2 | Volumetric strain hardening | |:::| $dp_0 = -ECRO\;p_0\varepsilon_v^p$ | |:::| Sign dependent on the consolidation stress | |:::| Softening is possible | ==== Elastic forms ==== |IELA = 0 | Linear elasticity | |:::| E_PAR1 = E : Young's Elastic modulus | |:::| E_PAR2 = ANU : Poisson's ratio | |:::| E_PAR3 : not used | |:::| E_PAR4 : not used | |:::| HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$ | |IELA = 1 | Non-linear elasticity | |:::| E_PAR1 = KAPPA : Elastic slope in oedometer path | |:::| E_PAR2 = ANU : Poisson's ratio | |:::| E_PAR3 : not used | |:::| E_PAR4 : not used | |:::| HARD = LAMBDA : Plastic slope in oedometer path | |IELA = 2 | Non-linear elasticity | |:::| E_PAR1 = KAPPA : Elastic slope in oedometer path | |:::| E_PAR2 = G0 : Shear modulus | |:::| E_PAR3 : not used | |:::| E_PAR4 : not used | |:::| HARD = LAMBDA : Plastic slope in oedometer path | |IELA = 3 | Non-linear elasticity | |:::| E_PAR1 = KAPPA : Elastic slope in oedometer path | |:::| E_PAR2 = K0 : Minimum value of the bulk modulus | |:::| E_PAR3 = G0 : Shear modulus | |:::| E_PAR4 = ALPHA2 | |:::| HARD = LAMBDA : Plastic slope in oedometer path | |IELA = 4 | Non-linear elasticity | |:::| E_PAR1 = K0 : Minimum value of the bulk modulus | |:::| E_PAR2 = n : $n$ parameter | |:::| E_PAR3 = G0 : Shear modulus | |:::| E_PAR4 = Patm : Atmospheric pressure | |:::| HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$ | |IELA = 5 | Non-linear elasticity | |:::| E_PAR1 = $\nu$ (ANU ???) : Poisson's ratio | |:::| E_PAR2 = n : $n$ parameter | |:::| E_PAR3 = G0 : Shear modulus | |:::| E_PAR4 = Patm : Atmospheric pressure | |:::| HARD = ECRO : Hardening parameter $$ ECRO = \frac{1+e_0}{\lambda-\kappa} $$ | ==== IPCONS Parameters ==== |IPCONS = 0| $p_0$ = PCONS0 | |IPCONS = 1| $p_0$ = $\sigma_v.$OCR | |IPCONS = 2| $p_0$ = $p_0(\sigma, \text{cohesion}, \phi).$OCR | where $p_0(\sigma, \text{cohesion}, \phi) = \left[\frac{-II_{\sigma}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi)}\right)}-I_{\sigma}\right]/3 $