User Tools

Site Tools


laws:epplasol

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:epplasol [2019/09/17 15:52]
helene [List of state variables]
laws:epplasol [2023/11/21 13:12] (current)
sophie [Real parameters]
Line 96: Line 96:
 |:::| If NINTV = 0 : number of sub-steps is based on the norm of the deformation increment and on DIV| |:::| If NINTV = 0 : number of sub-steps is based on the norm of the deformation increment and on DIV|
 |ISOL| = 0 : use of total stresses in the constitutive law| |ISOL| = 0 : use of total stresses in the constitutive law|
-|:::| $\neq$ 0 : use of effective stresses in the constitutive law. See annex 8 |+|:::| $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:​a8|Appendix ​8]] | 
 +|ICBIF| = 0 : nothing| 
 +|:::| = 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis) ​|
 |ILODEF| Shape of the yield surface in the deviatoric plane : | |ILODEF| Shape of the yield surface in the deviatoric plane : |
 +|:::| = 1 : circle in the deviatoric plane|
 +|:::| = 2 : smoothed irregular hexagon in the deviatoric plane|
 +|ILODEG| Shape of the flow surface in the deviatoric plane : |
 |:::| = 1 : circle in the deviatoric plane| |:::| = 1 : circle in the deviatoric plane|
 |:::| = 2 : smoothed irregular hexagon in the deviatoric plane| |:::| = 2 : smoothed irregular hexagon in the deviatoric plane|
 |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE| |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE|
 |:::| = 1 : $\psi$ is defined with PHMPS| |:::| = 1 : $\psi$ is defined with PHMPS|
 +|:::| = 2 : Variable dilatancy (El Moustapha,​2014) ((El Moustapha, K. (2014) ‘Identification of an enriched constitutive law for geomaterials in the presence of a strain localisation’,​ Thesis, Liège University.))|
 +|:::| = 3 : Variable dilatancy (Salehnia, 2015)((Salehnia,​ F. (2015) From some obscurity to clarity in Boom clay behavior: Analysis of its coupled hydro-mechanical response in the presence of strain localization. Thesis, Liège University.))|
 |KMETH| = 2 : actualised VGRAD integration| |KMETH| = 2 : actualised VGRAD integration|
 |:::| = 3 : Mean VGRAD integration (Default value) | |:::| = 3 : Mean VGRAD integration (Default value) |
Line 117: Line 124:
 |:::| 2 : concrete hydration via .hydr file | |:::| 2 : concrete hydration via .hydr file |
 ==== Real parameters ==== ==== Real parameters ====
-^ Line 1 (7G10.0/​7G10.0/​7G10.0/​5G10.0 ) ^^+^ Line 1 (8G10.0) ^^
 |E| YOUNG’s elastic modulus | |E| YOUNG’s elastic modulus |
 |ANU| Poisson ratio | |ANU| Poisson ratio |
Line 125: Line 132:
 |DIV| Size of sub-steps for computation of NINTV (only if NINTV=0; Default value=5.D-3) | |DIV| Size of sub-steps for computation of NINTV (only if NINTV=0; Default value=5.D-3) |
 |PHMPS| Constant value for definition of | |PHMPS| Constant value for definition of |
 +|AE| If AE$\neq$0, Linear evolution of young modulus with confinement pressure is considered $E=E0+AE \cdot \sigma$|
 ^ Line 2 (7G10.0) ^^ ^ Line 2 (7G10.0) ^^
 |PHIC0| Initial Coulomb'​s angle (in degrees) for compressive paths  | |PHIC0| Initial Coulomb'​s angle (in degrees) for compressive paths  |
Line 137: Line 145:
 |COHF| Final value of cohesion | |COHF| Final value of cohesion |
 |BCOH| Only if there is hardening/​softening | |BCOH| Only if there is hardening/​softening |
-|BIOPT| ​  ​|+|BIOPT| ​Parameter for optimising the bifurcation computation based on Linear Comparison Solid (L.C.S). If BIOPT = 0 then Upper Bound L.C.S. If BIOPT = 1 then Lower Bound of L.C.S. If 0<​BIOPT<​1 then Intermediate L.C.S.|
 |AK1|Capillary cohesion first parameter | |AK1|Capillary cohesion first parameter |
 |AK2|Capillary cohesion second parameter | |AK2|Capillary cohesion second parameter |
 |DECCOH| Cohesion hardening shifting | |DECCOH| Cohesion hardening shifting |
-^ Line 4 - Only if IDAM = 2 (5G10.0) ^^+^ Line 4 - Only If IECPS = 2 Or IECPS = 3 (7G10.0) ^^ 
 +|PSICPEAK| Peak of dilatancy angle for compressive paths (If IECPS=2 then PSICPEAK is the initial value of dilatancy angle| 
 +|PSICLIM| Limit value of dilatancy angle for compressive paths| 
 +|RATPSI| Ratio between initial and peak of dilatancy angle| 
 +|BPSI| Value of EEQU for which PSIC=0.5 (PSICPEAK - PSICLIM) ​ | 
 +|PSIEPEAK| Peak of dilatancy angle for extensive paths (If IECPS=2 then PSIEPEAK is the initial value of dilatancy angle) ​ | 
 +|PSIELIM| Limit value of dilatancy angle for extensive paths| 
 +|DECPSI| Value of EEQU when the dilatancy angle has been half decreased between its initial and final values| 
 +^ Line 4 - Only if IDAM = 1 AND (IECPS = 0 or IECPS =1) (2G10.0) \\ Or Line 5 - Only If IDAM = 1 AND (IECPS ​= 2 or  IECPS = 3) (2G10.0) ^^ 
 +|P| Parameter controlling the damage evolution rate  | 
 +|YD0| Initial threshold ​ | 
 +^ Line 4 - Only if IDAM = 2 AND (IECPS = 0 or IECPS =1) (5G10.0) \\ Or Line 5 - Only If IDAM = 2 AND (IECPS = 2 or IECPS = 3)(5G10.0) ^^
 |__Note__: The evolution of the hydratation degree must be specified in file *.hydr such that: \\ TIMES \\ (I10) number of time steps defined below \\ (2G10.0, repeated) Time step, alpha|| |__Note__: The evolution of the hydratation degree must be specified in file *.hydr such that: \\ TIMES \\ (I10) number of time steps defined below \\ (2G10.0, repeated) Time step, alpha||
 |FCF| Final simple compression resistance | |FCF| Final simple compression resistance |
laws/epplasol.1568728366.txt.gz · Last modified: 2020/08/25 15:35 (external edit)