User Tools

Site Tools


laws:epmomas

This is an old revision of the document!


EP-MOMAS

Description

Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with linear elasticity. Isotropic softening of cohesion is possible.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LMOMA.F
Lagamine: MOMA2EA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 586
COMMNT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (7I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV
ISOL = 0 : Use of total stresses in the constitutive law
≠ 0 : Use of effective stresses in the constitutive law (See annex 8)
ICBIF = 0 : Nothing
= 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis)
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
ILODEG Shape of the flow surface in the deviatoric plane
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
IECPS = 0 : $\psi$ is defined with PSIC and PSIE
= 1 : $\psi$ is defined with PHMPS
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)

Real parameters

Line 1 (7G10.0)
E Young's elastic modulus
ANU Poisson's ratio
PSIC Dilatancy angle (in degrees) for compressive paths
PSIE Dilatancy angle (in degrees) for extensive paths (iff ILODEG=2)
RHO Specific mass
DIV Size of sub-steps for computation of NINTV (only if NINTV=0; Default value=5.D-3)
PHMPS Constant value for definition of
Line 2 (3G10.0)
PHIC Coulomb's angle (in degrees) for compressive paths
PHIE Coulomb's angle (in degrees) for extensive paths
AN Van Eekelen exponent (default value=-0.229)
Line 3 (4G10.0)
COH0 Initial value of cohesion 
ALPHA Coefficient in the softening relationship
GAMMARP
BIOPT

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 24 in all the other cases

List of state variables

Q(1) = 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Actualised specific mass
Q(3) = 0 : Current state is elastic
= 1 : Current state is elasto-plastic
Q(4) Plastic work per unit volume ($W^p$)
Q(5) Volumic variation
Q(6) Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$
Q(7) Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$
Q(8) X deformation
Q(9) Y deformation
Q(10) Z deformation
Q(11) XY deformation
Q(12) Equivalent strain n°2 : $\varepsilon_{eq2}=\int\Delta\varepsilon_{eq}$
Q(13) Equivalent strain indicator n°2 (Villote n°2) $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$
Q(14) Actualised value of equivalent plastic strain $\varepsilon_{eq}^p$
Q(15) Actualised value of cohesion $c$
Q(16) Actualised value of Coulomb's frictional angle in compressive path ($\phi_C$)
Q(17) Actualised value of Coulomb's frictional angle in extensive path ($\phi_E$)
Q(18) = 0 : If the stress state is not at the criterion apex
= 1 : If the stress state is at the criterion apex
Q(19) Number of sub-intervals used for the integration
Q(20)
Q(21)
Q(22) Actualised value of volumetric plastic deformations
Q(23) Second deviatoric strain increment invariant
Q(24) Plastic loading index
Q(25) Memory of localisation calculated during the re-meshing
Q(26)$\rightarrow$Q(36) Reserved for bifurcation

Formulation

Yield and flow surfaces

The stresses and stress invariants are : \[I_{\sigma} = \sigma_{ij}\quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} \] \[II_{\hat{\sigma}}=\sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}}\quad ;\quad III_{\hat{\sigma}} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki}\] \[\beta =-\frac{1}{3}\sin^{-1}\left(\frac{3\sqrt{3}}{2}\frac{III_{\hat{\sigma}}}{II^3_{\hat{\sigma}}}\right)\]

Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen)

The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with : - Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$ - Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.

The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ )

Softening

Softening is assumed to be represented by the evolution of cohesion as a function of the Von Mises equivalent plastic strain : \[\gamma^p=\sqrt{\hat{\varepsilon}_{ij}^p\hat{\varepsilon}_{ij}^p}\] where $\hat{\varepsilon}_{ij} = \varepsilon_{ij}-\frac{I_{\varepsilon}}{3}\delta_{ij}$ is the deviatoric strain tensor.

The following function is used : \begin{align*}f(\gamma^p)&=\left(1-(1-\alpha)\frac{\gamma^p}{\gamma_R^p}\right)^2\;quad\text{if}\quad 0<\gamma^p<\gamma^p_R \\ &= \alpha^2 \quad\text{if}\quad \gamma^p\geq \gamma_R^p \end{align*} where $\alpha$ and $\gamma_R^p$ are two models parameters.

laws/epmomas.1571138205.txt.gz · Last modified: 2020/08/25 15:35 (external edit)