====== EP-MOMAS ====== ===== Description ===== Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with linear elasticity. Isotropic softening of cohesion is possible. ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LMOMA.F \\ Lagamine: MOMA2EA.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 586| |COMMNT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (7I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : Number of sub-steps is based on the norm of the deformation increment and on DIV | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| ≠ 0 : Use of effective stresses in the constitutive law (See annex 8) | |ICBIF| = 0 : Nothing | |:::| = 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis) | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Shape of the flow surface in the deviatoric plane | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE | |:::| = 1 : $\psi$ is defined with PHMPS | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | ==== Real parameters ==== ^ Line 1 (7G10.0) ^^ |E| Young's elastic modulus | |ANU| Poisson's ratio | |PSIC| Dilatancy angle (in degrees) for compressive paths | |PSIE| Dilatancy angle (in degrees) for extensive paths (iff ILODEG=2) | |RHO| Specific mass | |DIV| Size of sub-steps for computation of NINTV (only if NINTV=0; Default value=5.D-3) | |PHMPS| Constant value for definition of | ^ Line 2 (3G10.0) ^^ |PHIC| Coulomb's angle (in degrees) for compressive paths | |PHIE| Coulomb's angle (in degrees) for extensive paths | |AN| Van Eekelen exponent (default value=-0.229) | ^ Line 3 (4G10.0) ^^ |COH0| Initial value of cohesion | |ALPHA| Coefficient in the softening relationship | |GAMMARP| | |BIOPT|| ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== = 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ = 24 in all the other cases ==== List of state variables ==== |Q(1)| = 1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Actualised specific mass | |Q(3)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic | |Q(4)| Plastic work per unit volume ($W^p$) | |Q(5)| Volumic variation | |Q(6)| Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$ | |Q(7)| Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$ | |Q(8)| X deformation | |Q(9)| Y deformation | |Q(10)| Z deformation | |Q(11)| XY deformation | |Q(12)| Equivalent strain n°2 : $\varepsilon_{eq2}=\int\Delta\varepsilon_{eq}$ | |Q(13)| Equivalent strain indicator n°2 (Villote n°2) $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$ | |Q(14)| Actualised value of equivalent plastic strain $\varepsilon_{eq}^p$ | |Q(15)| Actualised value of cohesion $c$ | |Q(16)| Actualised value of Coulomb's frictional angle in compressive path ($\phi_C$) | |Q(17)| Actualised value of Coulomb's frictional angle in extensive path ($\phi_E$) | |Q(18)| = 0 : If the stress state is not at the criterion apex | |:::| = 1 : If the stress state is at the criterion apex | |Q(19)| Number of sub-intervals used for the integration | |Q(20)| | |Q(21)| | |Q(22)| Actualised value of volumetric plastic deformations | |Q(23)| Second deviatoric strain increment invariant | |Q(24)| Plastic loading index | |Q(25)| Memory of localisation calculated during the re-meshing | |Q(26)$\rightarrow$Q(36)| Reserved for bifurcation | ===== Formulation ===== ==== Yield and flow surfaces ==== The stresses and stress invariants are : \[I_{\sigma} = \sigma_{ij}\quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} \] \[II_{\hat{\sigma}}=\sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}}\quad ;\quad III_{\hat{\sigma}} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki}\] \[\beta =-\frac{1}{3}\sin^{-1}\left(\frac{3\sqrt{3}}{2}\frac{III_{\hat{\sigma}}}{II^3_{\hat{\sigma}}}\right)\] === Criterion with friction angle different from 0 (Drücker Prager or Van Eekelen) === The regular criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}<\frac{3c}{\tan\phi_c}$ : \[f=II_{\hat{\sigma}}+m\left(I_{\sigma}-\frac{3c}{\tan\phi_c}\right)=0\] with : - Drücker Prager : $m = \frac{2\sin\phi_c}{\sqrt{3}(3-\sin\phi_c)}$ - Van Eekelen : $m=a(1+b\sin 3\beta)^n$ where $a$ and $b$ are functions of $\phi_C$, $\phi_E$ and $n$.\\ The apex criterion is used if $I_{\sigma}-m'II_{\hat{\sigma}}\geq\frac{3c}{\tan\phi_C}$ : \[f=I_{\sigma}-\frac{3c}{\tan\phi_c}=0\] where $m'$ is the equivalent of $m$ but for the flow surface (i.e. $\phi$ is replaced by $\psi$ ) ==== Softening ==== Softening is assumed to be represented by the evolution of cohesion as a function of the Von Mises equivalent plastic strain : \[\gamma^p=\sqrt{\hat{\varepsilon}_{ij}^p\hat{\varepsilon}_{ij}^p}\] where $\hat{\varepsilon}_{ij} = \varepsilon_{ij}-\frac{I_{\varepsilon}}{3}\delta_{ij}$ is the deviatoric strain tensor.\\ The following function is used : \begin{align*}f(\gamma^p)&=\left(1-(1-\alpha)\frac{\gamma^p}{\gamma_R^p}\right)^2\;quad\text{if}\quad 0<\gamma^p<\gamma^p_R \\ &= \alpha^2 \quad\text{if}\quad \gamma^p\geq \gamma_R^p \end{align*} where $\alpha$ and $\gamma_R^p$ are two models parameters.