====== EP-MOHR ====== ===== Description ===== Elasto-plastic constitutive law for solid elements at constant temperature (non-associated) with linear elasticity. Isotropic hardening/softening of friction angle and cohesion is possible and the Mohr Coulomb yield surface is represented.\\ ==== The model ==== This model is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains, with a Mohr Coulomb yield surface. \\ Integration is performed using an implicit backward Euler scheme with a return mapping normal to the flow surface $g$. This law can take into account the influence of: * the first stress invariant, i.e. the yield surface is either parallel to the pressure axis in the $p-q$ plane, * the third stress invariant, i.e. the Lode angle : the trace in the deviatoric plane is an irregular hexagon. {{ :laws:epmohr1.png?400 |}} === Yield and flow surfaces === The stresses and stress invariants are: $$ I_{\sigma} = \sigma_{ij} \quad ; \quad \hat{\sigma}_{ij}=\sigma_{ij}-\frac{I_{\sigma}}{3}\delta_{ij} $$ $$ II_{\sigma} = \sqrt{\frac{1}{2}\hat{\sigma}_{ij}\hat{\sigma}_{ij}} \quad ; \quad III_{\sigma} = \frac{1}{3}\hat{\sigma}_{ij}\hat{\sigma}_{jk}\hat{\sigma}_{ki} $$ $$ \beta = -\frac{1}{3} \;\sin^{-1}\left(\frac{3\sqrt{3}}{2} \frac{III_{\sigma}}{II_{\sigma}^3}\right) $$ The Mohr-Coulomb failure criterion is an intrinsic curve criterion. It expresses a linear relationship between the shear stress $\tau$ and the normal stress $\sigma_N$ acting on a failure plane. $$ \tau = c + \sigma_N \;\tan\phi $$ where $c$ is the cohesion and $\phi$ the friction angle. This criterion can be expressed in a more general fashion in term of principal stresses by the relation $$ f=\frac{I_{\sigma}}{3}\sin\phi + II_{\sigma}\cos\beta -\frac{II_{\sigma}}{\sqrt{3}}\sin\beta\sin\phi-c\cos\phi = 0 $$ The criterion predicts identical friction angles under triaxial compression paths and triaxial extension paths. === Hardening/softening === Hardening/softening is assumed to be represented by the evolution of friction angles and/or cohesion as a function of the Von Mises equivalent plastic strain $$ \varepsilon_{eq}^p = \sqrt{\frac{2}{3}\hat{\varepsilon}^p_{ij}\hat{\varepsilon}^p_{ij}}$$ Hyperbolic functions are used $$ \phi = \phi_0+\frac{(\phi_f-\phi_0)\varepsilon_{eq}^p}{B_p+\varepsilon_{eq}^p}\quad , \quad c=c_0+\frac{(c_f-c_0)\varepsilon_{eq}^p}{B_C+\varepsilon_{eq}^p} $$ where coefficients $B_p$ and $B_c$ are respectively the values of equivalent plastic strain for which half of the hardening/softening on friction angles and cohesion is achieved (see figure 2). {{ :laws:epmohr2.png?600 |}} ==== Files ==== Prepro: LMOHR.F \\ Lagamine: MOHR2EA.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| YES| |Generalised plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL| Law number | |ITYPE| 591 | |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing | ==== Integer parameters ==== ^ Line 1 (5I5) ^^ |NINTV| number of sub-steps used to integrate numerically the constitutive equation in a time step. If NINTV=0 : number of sub-steps is based on the norm of the deformation increment and on DIV | |ISOL| = 0 : use of total stresses in the constitutive law | |:::| $\neq 0$ : use of effective stresses in the constitutive lax. See [[appendices:a8|Appendix 8]]. | |ICBIF| = 0 : nothing | |:::| = 1 : Rice bifurcation criterion is computed (only for 2D plane strain analysis) | |IECPS| = 0 : $\Psi$ is defined with PSIC and PSIE | |:::| = 1 : $\Psi$ is defined with PHMPS | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |E| Young elastic modulus | |ANU| Poisson ratio| |PSI| Dilatancy angle (in degrees) | |RHO| Specific mass | |DIV| Size of sub-steps for computation of NINTV (only if NINTV=0 ; Default value = $5.D-3$) | |PHMPS| Constant value for definition of ... ? | ^ Line 2 (3G10.0) ^^ |PHI0| Initial Coulomb's angle (in degrees) | |PHIF| Final Coulomb's angle (in degrees) | |BPHI| Only if there is hardening/softening | ^ Line 3 (3G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening| ===== Stresses ===== ==== Number of stresses ==== 4 for 2D analysis \\ 6 for 3D analysis ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For 2D analysis : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| For 3D analysis : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| ===== State variables ===== ==== Number of state variables ==== 37 for the 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 25 in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| actualised specific mass | |Q(3)| = 0 i the current state is elastic | |:::| = 1 if the current state is elasto-plastic | |Q(4)| plastic work per unit volume ($W^p$) | |Q(5)| volume variation | |Q(6)| equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\Delta t$ | |Q(7)| equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\Delta t}{\varepsilon_{eq1}}$ | |Q(8)| X deformation | |Q(9)| Y deformation | |Q(10)| Z deformation | |Q(11)| XY deformation | |Q(12)| equivalent strain n°2 : $\varepsilon_{eq2}=\int\Delta\varepsilon_{eq}$ |Q(13)| equivalent strain indicator n°2 (Villote n°2) : $\alpha_2=\frac{\Delta\varepsilon_{eq}}{\varepsilon_{eq2}}$ | |Q(14)| actualised value of equivalent plastic strain $\varepsilon_{eq}^p$ | |Q(15)| actualised value of cohesion $c$ | |Q(16)| actualised value of Coulomb's friction angle | |Q(17)| = 0 if the stress state is not at the criterion apex | |:::| = 1 if the stress state is at the criterion apex | |Q(18)| number of sub-intervals used for the integration | |Q(19)| memory of localisation calculated during the re-meshing | |Q(20)| ... | |Q(21)| principal stress n°1 | |Q(22)| principal stress n°2 | |Q(23)| principal stress n°3 | |Q(24)| ICRITF | |Q(25) $\rightarrow$ Q(37)| reserved for bifurcation |