====== EP-LEV ====== ===== Description ===== An elasto-viscoplastic simplified law ==== The model ==== Mechanical analysis of visco-plastic isotropic solids undergoing large strains. \\ Isotropic hardening is assumed. ==== Files ==== Prepro: LLEV.F \\ ===== Availability ===== |Plane stress state| YES | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 65| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== **For IANA = 1 (plane stress state)** |MLAW|the method used to calculate the increments of stress \\ = 0 $\rightarrow$ Backword Euler method \\ = 1 $\rightarrow$ Radial Return method \\ = 2 $\rightarrow$ Decomposed mode method | |MANA|= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda} = 0$ \\ = 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\sigma}_{eq}$ \\ = 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$\\ = 3 The tangent matrix obtained by the consistent condition| **Else (plane strain and axisymmetric state)** |MLAW| the method used to calculate the increments of stress \\ 0 $\rightarrow$ Radial Return method \\ 1 $ \rightarrow$ Implicit integration method\\ 2 $\rightarrow$ Modified implicit integration method| __If MLAW = 0 (Radial return method)__ |MANA|= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\omega} = 0$ \\ = 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\sigma}_{eq}$ = $\dot{\sigma}_{eq}^{trial}$ \\ = 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\sigma}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$| __Else (other methods)__ |MANA|= 0 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{vp} = 0$ \\ = 1 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{vp}$ $\Rightarrow$ $\dot{\sigma}_{eq}$ \\ = 2 $\rightarrow$ The tangent matrix obtained by setting $\dot{\lambda}_{eq}$ $\Rightarrow$ $\dot{\varepsilon}_{eq}$| ==== Real parameters ==== ^Line 1 (4G10.0)^^ |E| YOUNG's elastic modulus | |$\nu$| POISSON's ratio. | |AC|parameter for $\sigma - \varepsilon$ relation| |AM|parameter for $\sigma - \varepsilon$ relation| Where: \[\hat{\sigma}_{eq}=AC*\hat{D}_{eq}^{AM}\] |$\hat{\sigma}_{eq}$| the equivalent deviatoric stress| |$\hat{D}_{eq}$| the equivalent deviatoric velocity of deformation| ===== Stresses ===== ==== Number of stresses ==== 4 ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{XY}$| |SIG(4)|$\sigma_{ZZ}$| ===== State variables ===== ==== Number of state variables ==== 4 ==== List of state variables ==== |Q(1)| element thickness (t) in plane stress state and generalized plane state \\ 1 in plane strain state \\ circumferential strain rate ($\dot{varepsilon}_{\theta}$) in axisymmetric state| |Q(2)| current yield limit in tension, its initial value is $R_{eo}$| |Q(3)| equivalent deviatoric strain $\hat{\varepsilon}_{eq}$| |Q(4)| equivalent deviatoric stress $\sigma_{eq}$ | |Q(5)|critères de fractures| |Q(10)|:::|