Table of Contents

EP-JET

Description

Elasto-plastic constitutive law for solid elements at constant temperature

The model

This law is used for mechanical analysis of elastoplastic isotropic element undergone large deformation. Isotropic hardening is assumed.

Files

Prepro: LJET.F (2D), LJET3.F (3D)
Lagamine: JETVON.F (2D), JT3VM.F (3D)

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 55 for 2D; 58 for 3D
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTVnumber of sub‑steps used to integrate numerically the constitutive equation in a time step (<0 automatic calculation of NINTV)
NPOINTnumber of points to define the hardening law

Real parameters

If NPOINT = 0

Line 1 (4G10.0)
EYoung's elastic modulus
$\nu$POISSON's ratio
REyield limit $(R_e)$
ETelasto‑plastic tangent modulus $(E_t)$

If NPOINT ≠ 0

Line 1 (2G10.0)
EYoung's elastic modulus
$\nu$POISSON's ratio
Line I = 2:NPOINT (2G10.0)
EPS(I)Points defining the hardening curve
SIG(I)

Stresses

Number of stresses

= 4 : for 2D analysis
= 6 : for 3D analysis

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 2D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

For 3D analysis :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

State variables

Number of state variables

= 27 : for 2D analysis
= 15 : for 3D analysis

List of state variables

For 2D analysis :

Q(1) current yield limit in tension; its initial value is $R_e$
Q(2) equivalent plastic strain $(\bar{\varepsilon}^p)$
Q(3) equivalent VM type stress in this element.
Q(4) $\sigma_{xx}$ in local axes of the element
Q(5) $\sigma_{yy}$ in local axes of the element
Q(6) $\sigma_{zz}$ in local axes of the element
Q(7) $\sigma_{xy}$ in local axes of the element
Q(8) $\sigma_{1}$ anti‑hourglass stress
Q(9) $\sigma_{2}$ anti‑hourglass stress
Q(10to13) x nodal coordinates in local axes of the element
Q(14to17) y nodal coordinates in local axes of the element
Q(18) = 0 in plane strain state
= average radius (X coordinate) of the element in axisymmetric state
Q(19) area of the element in the XY plane
Q(20) area of the no deformed element
Q(21) X(4) ‑ X(2) in initial structure
Q(22) X(3) ‑ X(1) in initial structure
Q(23) Y(4) ‑ Y(2) in initial structure
Q(24) Y(3) ‑ Y(1) in initial structure

For 3D analysis :

Q(1) current yield limit tension
Q(2)equivalent plastic strain $(\bar{\varepsilon}^p)$
Q(3) equivalent VM type stress for this element.
Q(4) $\sigma_{11}$ anti‑hourglass stress
Q(5) $\sigma_{12}$ anti‑hourglass stress
Q(6) $\sigma_{13}$ anti‑hourglass stress
Q(7) $\sigma_{21}$ anti‑hourglass stress
Q(8) $\sigma_{22}$ anti‑hourglass stress
Q(9) $\sigma_{23}$ anti‑hourglass stress
Q(10) $\sigma_{31}$ anti‑hourglass stress
Q(11) $\sigma_{32}$ anti‑hourglass stress
Q(12) $\sigma_{33}$ anti‑hourglass stress
Q(13) $\sigma_{41}$ anti‑hourglass stress
Q(14) $\sigma_{42}$ anti‑hourglass stress
Q(15) $\sigma_{43}$ anti‑hourglass stress