Table of Contents

EP-GURSHEAR

Description

Law name : GTNB

3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus and nucleation, growth and coalescence of voids. Extended to shear loads. Applied on porous ductile materials.

The model

Files

Prepro: LGUR3.F
Lagamine: GUR2DEXT.F, GUR3DEXT.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 364 (3D) and 365 (axi)
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (7I5)
NINTV Number of sub-steps used to integrate numerically the constitutive equation in a time step
NINTEPS Number of sub-intervals per unit of delta epsilon
Number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON)
MAXIT Maximum number of iterations in the N-R scheme
IKAP = 0 : Tangent matrix by perturbation (through LOAX3D)
= 1 : Tangent matrix by perturbation (calculated within the law)
= 2 : Analytical tangent matrix
NTYPHP Type of hardening
= 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\varepsilon_M^P)^n$
= 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\varepsilon_M^P)]$
= 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\varepsilon_M^P)^n$ (not working)
NTYPEX = 0 : Classic Gurson (only void growth)
= 1 : GTN model (Nucleation+growth+coalescence)
= 2 : Shear (Nahshon and Hutchinson, 2008)
= 3 : GTN+Shear (Nahshon and Hutchinson, 2008)
= 4 : GTN+Shear (Xue, 2008)
NTYCOA = 1 : Coalescence criterion (Tvergaard & Needemen)
= 2 : Coalescence criterion Thomason (Zhang et al. 2000)

Real parameters

Line 1 (2G10.0)
E YOUNG's elastic modulus = param(1,ilaw)
ANU POISSON's ratio = param(2,ilaw)
Line 2 (3G10.0)
CK Coefficient of the hardening law ($K$) = param(3,ilaw)
CW Hardening coefficient ($\varepsilon_0$ or $\sigma_0$) = param(5,ilaw)
CN Strain hardening exponent ($n$) = param(4,ilaw)
Line 3 (2G10.0)
CX Parameter of the kinematic hardening ($C_X$) = param(6,ilaw)
XSAT Parameter of the kinematic hardening ($X_{sat}) \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\dot{\bar{\varepsilon}}^p\right)\] = param(7,ilaw)
Line 4 (6G10.0)
F Hill's coefficients = param(8,ilaw)
G = param(9,ilaw)
H = param(10,ilaw)
L = param(11,ilaw)
M = param(12,ilaw)
N = param(13,ilaw)
Line 5 (7G10.0)
QUN Damage parameter ($q_1$) = param(15,ilaw)
QDEUX Damage parameter ($q_2$) = param(16,ilaw)
QTR Damage parameter ($q_3$) = param(17,ilaw)
F0 Initial porosity ($f_0$) = param(18,ilaw)
If NTYPEX=2,3 (Nahshon and Hutchinson, 2008)
KOMEGA Shear parameter ($k_{\omega}$) = param(19,ilaw)
TR1 Shear parameter ($T_1$) = param(26,ilaw)
TR2 Shear parameter ($T_2$) = param(27,ilaw)
If NTYPEX=4 (Xue, 2008)
QQ3 Shear parameter ($k_g$) = param(19,ilaw)
QQ4 Shear parameter ($q_4$) \[\dot{D}_{shear} = k_g\;f^{q_4}\;g_{\theta}\;\varepsilon_{eq}\;\dot{\varepsilon}_{eq}\] = param(20,ilaw)
If NTYPEX=1,3,4
Line 6 (5G10.0)
FNUC Nucleation parameter ($f_N$) = param(21,ilaw)
SNUC Nucleation parameter ($S_N$) = param(22,ilaw)
ENUC Nucleation parameter ($\varepsilon_N$) = param(23,ilaw)
FCRIT Coalescence parameter ($f_c$) = param(24,ilaw)
FFAIL Coalescence parameter ($f_U$) = param(25,ilaw)

Note : If FCRIT=FFAIL=0, there is no coalescence.

Stresses

Number of stresses

4 (axi)
6 (3D)

Meaning

GUR3DEXT :

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{yz}$
SIG(6)$\sigma_{xz}$

GUR2DEXT :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$

State variables

Number of state variables

27 (axi)
30 (3D)

List of state variables

GUR3DEXT :

Q(1) = 0 : Current state is elasticĀ 
= 1 : Current state is elasto-plastic
Q(2) Equivalent plastic strain in the matrix
(not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium)
Q(3)$\rightarrow$Q(8) The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$
Q(9)$\rightarrow$Q(14) The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$
Q(15) $f$ : (Effective $f^*$) void volume fraction
Q(16) $T$ : triaxiality (without backstress)
Q(17) If NTYPEX=2,3 (Nahshon and Hutchinson, 2008) :
= $\omega$ : Lode parameter corrected (Nielsen and Tvergaard, 2010)
If NTYPEX=4 (Xue, 2008) :
= $g_{\theta}$ : Lode parameter
Q(18) = $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain
Q(19) $q$ : Effective eq. macroscopic stress
Q(20) $p$ : Effective hydrostatic stress
Q(21) $f$ : Void volume fraction
Q(22) Porosity (Nucleation contribution)
Q(23) Porosity (Growth contribution)
Q(24) Porosity (Shear contribution)
Q(25) $D$ : Damage variable
Q(26) $\mu_{\sigma}$ : Lode parameter (Lode, 1926)
Q(27) $X$ : Lode parameter (Wierzbicki et al., 2005)
Q(28) $\bar{\theta}$ : Lode parameter (Bai and Wierzbicki, 2008)
Q(29) $\omega$ : Lode parameter (Nahshon and Hutchinson, 2008)
Q(30) $\theta_V$ : Lode parameter (Voyiadjis, 2012)
Q(31) $\beta_{coal}$ if (.GE.0) then coalescence
Q(32) Fcr computed by Thomason criterion

GUR2DEXT :

Q(2) = 0 : Current state is elasticĀ 
= 1 : Current state is elasto-plastic
Q(3) Equivalent plastic strain in the matrix
(not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium)
Q(4)$\rightarrow$Q(7) The four components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$
Q(8)$\rightarrow$Q(11) The four components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$
Q(12) $f$ : (Effective $f^*$) void volume fraction
Q(13) $T$ : triaxiality (without backstress)
Q(14) If NTYPEX=2,3 (Nahshon and Hutchinson, 2008) :
= $\omega$ : Lode parameter corrected (Nielsen and Tvergaard, 2010)
If NTYPEX=4 (Xue, 2008) :
= $g_{\theta}$ : Lode parameter
Q(15) $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain
Q(16) $q$ : Effective eq. macroscopic stress
Q(17) $p$ : Effective hydrostatic stress
Q(18) $f$ : Void volume fraction
Q(19) Porosity (Nucleation contribution)
Q(20) Porosity (Growth contribution)
Q(21) Porosity (Shear contribution)
Q(22) $D$ : Damage variable
Q(23) $\mu_{\sigma}$ : Lode parameter (Lode, 1926)
Q(24) $X$ : Lode parameter (Wierzbicki et al., 2005)
Q(25) $\bar{\theta}$ : Lode parameter (Bai and Wierzbicki, 2008)
Q(26) $\omega$ : Lode parameter (Nahshon and Hutchinson, 2008)
Q(27) $\theta_V$ : Lode parameter (Voyiadjis, 2012)