====== EP-GURSHEAR ====== ===== Description ===== Law name : GTNB \\ 3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus and nucleation, growth and coalescence of voids. Extended to shear loads. Applied on porous ductile materials. ==== The model ==== * Mixed hardening and plastic anisotropy. * All the state variables are integrated implicitly. * Two shear extensions available. * Analytical computation of the consistent tangent modulus (See IJNME 2011:85:1049-1072) available. ==== Files ==== Prepro: LGUR3.F \\ Lagamine: GUR2DEXT.F, GUR3DEXT.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO | |Axisymmetric state| YES | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 364 (3D) and 365 (axi)| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (7I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |NINTEPS| Number of sub-intervals per unit of delta epsilon | |:::| Number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON) | |MAXIT| Maximum number of iterations in the N-R scheme | |IKAP| = 0 : Tangent matrix by perturbation (through LOAX3D) | |:::| = 1 : Tangent matrix by perturbation (calculated within the law) | |:::| = 2 : Analytical tangent matrix | |NTYPHP| Type of hardening | |:::| = 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\varepsilon_M^P)^n$ | |:::| = 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\varepsilon_M^P)]$ | |:::| = 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\varepsilon_M^P)^n$ (not working)| |NTYPEX| = 0 : Classic Gurson (only void growth) | |:::| = 1 : GTN model (Nucleation+growth+coalescence) | |:::| = 2 : Shear (Nahshon and Hutchinson, 2008) | |:::| = 3 : GTN+Shear (Nahshon and Hutchinson, 2008) | |:::| = 4 : GTN+Shear (Xue, 2008) | |NTYCOA| = 1 : Coalescence criterion (Tvergaard & Needemen) | |:::| = 2 : Coalescence criterion Thomason (Zhang et al. 2000) | ==== Real parameters ==== ^ Line 1 (2G10.0) ^^^ |E| YOUNG's elastic modulus | = param(1,ilaw) | |ANU| POISSON's ratio | = param(2,ilaw) | ^ Line 2 (3G10.0) ^^^ |CK| Coefficient of the hardening law ($K$) | = param(3,ilaw) | |CW| Hardening coefficient ($\varepsilon_0$ or $\sigma_0$) | = param(5,ilaw) | |CN| Strain hardening exponent ($n$) | = param(4,ilaw) | ^ Line 3 (2G10.0) ^^^ |CX| Parameter of the kinematic hardening ($C_X$) | = param(6,ilaw) | |XSAT| Parameter of the kinematic hardening ($X_{sat}) \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\dot{\bar{\varepsilon}}^p\right)\] | = param(7,ilaw) | ^ Line 4 (6G10.0) ^^^ |F| Hill's coefficients | = param(8,ilaw) | |G| ::: | = param(9,ilaw) | |H| ::: | = param(10,ilaw) | |L| ::: | = param(11,ilaw) | |M| ::: | = param(12,ilaw) | |N| ::: | = param(13,ilaw) | ^ Line 5 (7G10.0) ^^^ |QUN| Damage parameter ($q_1$) | = param(15,ilaw) | |QDEUX| Damage parameter ($q_2$) | = param(16,ilaw) | |QTR| Damage parameter ($q_3$) | = param(17,ilaw) | |F0| Initial porosity ($f_0$) | = param(18,ilaw) | |**If NTYPEX=2,3 (Nahshon and Hutchinson, 2008)**||| |KOMEGA| Shear parameter ($k_{\omega}$) | = param(19,ilaw) | |TR1| Shear parameter ($T_1$) | = param(26,ilaw) | |TR2| Shear parameter ($T_2$) | = param(27,ilaw) | |**If NTYPEX=4 (Xue, 2008)**||| |QQ3| Shear parameter ($k_g$) | = param(19,ilaw) | |QQ4| Shear parameter ($q_4$) \[\dot{D}_{shear} = k_g\;f^{q_4}\;g_{\theta}\;\varepsilon_{eq}\;\dot{\varepsilon}_{eq}\]| = param(20,ilaw) | ^If NTYPEX=1,3,4^^^ ^ Line 6 (5G10.0) ^^^ |FNUC| Nucleation parameter ($f_N$) | = param(21,ilaw) | |SNUC| Nucleation parameter ($S_N$) | = param(22,ilaw) | |ENUC| Nucleation parameter ($\varepsilon_N$) | = param(23,ilaw) | |FCRIT| Coalescence parameter ($f_c$) | = param(24,ilaw) | |FFAIL| Coalescence parameter ($f_U$) | = param(25,ilaw) | Note : If FCRIT=FFAIL=0, there is no coalescence. ===== Stresses ===== ==== Number of stresses ==== 4 (axi) \\ 6 (3D) ==== Meaning==== __GUR3DEXT__ : \\ The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.\\ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{yz}$| |SIG(6)|$\sigma_{xz}$| __GUR2DEXT__ : \\ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| ===== State variables ===== ==== Number of state variables ==== 27 (axi) \\ 30 (3D) ==== List of state variables ==== __GUR3DEXT__ :\\ |Q(1)| = 0 : Current state is elasticĀ | |:::| = 1 : Current state is elasto-plastic | |Q(2)| Equivalent plastic strain in the matrix | |:::| (not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium) | |Q(3)$\rightarrow$Q(8)| The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$ | |Q(9)$\rightarrow$Q(14)| The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$ | |Q(15)| $f$ : (Effective $f^*$) void volume fraction | |Q(16)| $T$ : triaxiality (without backstress) | |Q(17)| If NTYPEX=2,3 (Nahshon and Hutchinson, 2008) :\\ = $\omega$ : Lode parameter corrected (Nielsen and Tvergaard, 2010) | |:::| If NTYPEX=4 (Xue, 2008) : \\ = $g_{\theta}$ : Lode parameter | |Q(18)| = $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain | |Q(19)| $q$ : Effective eq. macroscopic stress | |Q(20)| $p$ : Effective hydrostatic stress | |Q(21)| $f$ : Void volume fraction | |Q(22)| Porosity (Nucleation contribution) | |Q(23)| Porosity (Growth contribution) | |Q(24)| Porosity (Shear contribution) | |Q(25)| $D$ : Damage variable | |Q(26)| $\mu_{\sigma}$ : Lode parameter (Lode, 1926) | |Q(27)| $X$ : Lode parameter (Wierzbicki et al., 2005) | |Q(28)| $\bar{\theta}$ : Lode parameter (Bai and Wierzbicki, 2008) | |Q(29)| $\omega$ : Lode parameter (Nahshon and Hutchinson, 2008) | |Q(30)| $\theta_V$ : Lode parameter (Voyiadjis, 2012) | |Q(31)| $\beta_{coal}$ if (.GE.0) then coalescence | |Q(32)| Fcr computed by Thomason criterion | __GUR2DEXT__ :\\ |Q(2)| = 0 : Current state is elasticĀ | |:::| = 1 : Current state is elasto-plastic | |Q(3)| Equivalent plastic strain in the matrix | |:::| (not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium) | |Q(4)$\rightarrow$Q(7)| The four components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$ | |Q(8)$\rightarrow$Q(11)| The four components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$ | |Q(12)| $f$ : (Effective $f^*$) void volume fraction | |Q(13)| $T$ : triaxiality (without backstress) | |Q(14)| If NTYPEX=2,3 (Nahshon and Hutchinson, 2008) :\\ = $\omega$ : Lode parameter corrected (Nielsen and Tvergaard, 2010) | |:::| If NTYPEX=4 (Xue, 2008) : \\ = $g_{\theta}$ : Lode parameter | |Q(15)| $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain | |Q(16)| $q$ : Effective eq. macroscopic stress | |Q(17)| $p$ : Effective hydrostatic stress | |Q(18)| $f$ : Void volume fraction | |Q(19)| Porosity (Nucleation contribution) | |Q(20)| Porosity (Growth contribution) | |Q(21)| Porosity (Shear contribution) | |Q(22)| $D$ : Damage variable | |Q(23)| $\mu_{\sigma}$ : Lode parameter (Lode, 1926) | |Q(24)| $X$ : Lode parameter (Wierzbicki et al., 2005) | |Q(25)| $\bar{\theta}$ : Lode parameter (Bai and Wierzbicki, 2008) | |Q(26)| $\omega$ : Lode parameter (Nahshon and Hutchinson, 2008) | |Q(27)| $\theta_V$ : Lode parameter (Voyiadjis, 2012) |