Table of Contents

EP-GUR

Description

Elasto-plastic constitutive law for porous ductile metals at constant temperature, using the GURSON model.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous ductile solids undergoing large strains. Combined isotropic and kinematic hardening is assumed.

Files

Prepro: LGUR.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 80
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
NINTV = 0 : NINTV will be calculated in the law
> 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
ICBIF = 0 : Nothing
= 1 : RICE bifurcation criterion

Real parameters

Line 1 (6G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
SIGY1 Initial yield limit ($\sigma_{y1}$)
BB Parameter of hardening (0$\leq$BB$\leq$1)
= 0 : Pure kinematic hardening
= 1 : Pure isotropic hardening
DN > 0 : Strain hardening exponent ($n$) for piecewise power law
$\leq$ 0 : Plastic tangent modulus ($-E_t$) for bi-linear law
FO Initial void volume fraction
Line 2 (7G10.0)
FC Parameter of material ($f_C$)
FF Parameter of material ($f_F$)
RFS Parameter of material ($f_F^*/f_F$)
$Q_{UN}$ Parameter of material ($Q_1$)
$Q_{DEUX}$ Parameter of material ($Q_2$)
$Q_{TR}$ Parameter of material ($Q_3$) 
$\alpha_n$ Parameter for calculation of NINTV (if NINTV=0 and $\alpha_n$=0 : its value will be $1.0\times10^{-4}$)
Line 3 (7G10.0)
EPN Mean strain for nucleation ($\varepsilon_N$)
SPN Mean stress for nucleation ($\sigma_N$)
FN Volume fraction of void nucleating particles ($f_N$)
SEP Corresponding standard deviation for strain ($S_{\varepsilon}$)
SSIG Corresponding standard deviation for stress ($S_{\sigma}$)
DETEP Failure parameter of material ($\Delta_{\varepsilon}$)
DNCEPS Central parameter of material for nucleation and failure
= 0 : Nucleation of new voids and failure of material are not considered
= $\pm$1 : Nucleation is controlled by the plastic strain
= $\pm$2 : Nucleation is controlled by the maximum normal stress
= $\pm$3 : Both strain controlled and stress controlled nucleation take place
= -4 : Nucleation of new voids is not considered
> 0 : Failure of material is not considered

Stresses

Number of stresses

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

26

List of state variables

Q(1) Element thickness (t) in plane stress state
= 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
= 0 : 3-D state
Element thickness (t) in generalized plane state
Q(2) Current yield limit in tension (its initial value is $\sigma_{y1}$) 
Q(3) = 0 : Current state is elastic
= 1 : Current state is elasto-plastic
Q(4) = $\left(\varepsilon_M^p\right)_{max}$ : Current maximum value of equivalent plastic strain of matrix material (its initial value is $\varepsilon_N$)
Q(5) Current maximum value of $\sigma_m+\sigma_K^K/3$ (its initial value is $f_N$)
Q(6) Current void volume fraction (f) (its initial value is $f_o$)
Q(7) Equivalent plastic strain of matrix material ($\varepsilon_M^P$)
Q(8) A
Q(9) B
Q(10) C
Q(11) Yield surface centre for $\sigma_{xx}$ (its initial value is 0)
Q(12) Idem for $\sigma_{yy}$
Q(13) Idem for $\sigma_{zz}$
Q(14) Idem for $\sigma_{xy}$
Q(15)$\rightarrow$Q(26) Modules for the analysis of bifurcation