====== EP-GUR ====== ===== Description ===== Elasto-plastic constitutive law for porous ductile metals at constant temperature, using the GURSON model. ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous ductile solids undergoing large strains. Combined isotropic and kinematic hardening is assumed. ==== Files ==== Prepro: LGUR.F \\ ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| YES| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 80| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (2I5) ^^ |NINTV| = 0 : NINTV will be calculated in the law | |:::| > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |ICBIF| = 0 : Nothing | |:::| = 1 : RICE bifurcation criterion | ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |E| YOUNG's elastic modulus | |ANU| POISSON's ratio | |SIGY1| Initial yield limit ($\sigma_{y1}$) | |BB| Parameter of hardening (0$\leq$BB$\leq$1) | |:::| = 0 : Pure kinematic hardening | |:::| = 1 : Pure isotropic hardening | |DN| > 0 : Strain hardening exponent ($n$) for piecewise power law | |:::| $\leq$ 0 : Plastic tangent modulus ($-E_t$) for bi-linear law | |FO| Initial void volume fraction | ^ Line 2 (7G10.0) ^^ |FC| Parameter of material ($f_C$) | |FF| Parameter of material ($f_F$) | |RFS| Parameter of material ($f_F^*/f_F$) | |$Q_{UN}$| Parameter of material ($Q_1$) | |$Q_{DEUX}$| Parameter of material ($Q_2$) | |$Q_{TR}$| Parameter of material ($Q_3$) | |$\alpha_n$| Parameter for calculation of NINTV (if NINTV=0 and $\alpha_n$=0 : its value will be $1.0\times10^{-4}$) | ^ Line 3 (7G10.0) ^^ |EPN| Mean strain for nucleation ($\varepsilon_N$) | |SPN| Mean stress for nucleation ($\sigma_N$) | |FN| Volume fraction of void nucleating particles ($f_N$) | |SEP| Corresponding standard deviation for strain ($S_{\varepsilon}$) | |SSIG| Corresponding standard deviation for stress ($S_{\sigma}$) | |DETEP| Failure parameter of material ($\Delta_{\varepsilon}$) | |DNCEPS| Central parameter of material for nucleation and failure | |:::| = 0 : Nucleation of new voids and failure of material are not considered | |:::| = $\pm$1 : Nucleation is controlled by the plastic strain | |:::| = $\pm$2 : Nucleation is controlled by the maximum normal stress | |:::| = $\pm$3 : Both strain controlled and stress controlled nucleation take place | |:::| = -4 : Nucleation of new voids is not considered | |:::| > 0 : Failure of material is not considered | ===== Stresses ===== ==== Number of stresses ==== ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 26 ==== List of state variables ==== |Q(1)| Element thickness (t) in plane stress state | |:::| = 1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |:::| = 0 : 3-D state | |:::| Element thickness (t) in generalized plane state | |Q(2)| Current yield limit in tension (its initial value is $\sigma_{y1}$) | |Q(3)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic | |Q(4)| = $\left(\varepsilon_M^p\right)_{max}$ : Current maximum value of equivalent plastic strain of matrix material (its initial value is $\varepsilon_N$) | |Q(5)| Current maximum value of $\sigma_m+\sigma_K^K/3$ (its initial value is $f_N$) | |Q(6)| Current void volume fraction (f) (its initial value is $f_o$) | |Q(7)| Equivalent plastic strain of matrix material ($\varepsilon_M^P$) | |Q(8)| A | |Q(9)| B | |Q(10)| C | |Q(11)| Yield surface centre for $\sigma_{xx}$ (its initial value is 0) | |Q(12)| Idem for $\sigma_{yy}$ | |Q(13)| Idem for $\sigma_{zz}$ | |Q(14)| Idem for $\sigma_{xy}$ | |Q(15)$\rightarrow$Q(26)| Modules for the analysis of bifurcation |