====== EP-GTNPHY ====== ===== Description ===== 3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus, nucleation growth and coalescence of voids. Physically-based models. Applied on porous ductile materials. ==== The model ==== * Mixed hardening and plastic anisotropy. * $q_2$ is a state variable. * Different physically-based nucleation, growth and coalescence of voids. * Classical nucleation and coalescence modeling by Tvergaard and Needleman (GTN model). * Consistent tangent matrix calculated using the perturbation method. ==== Files ==== Prepro: LGUR3.F \\ Lagamine: GTNB3DPHY.F, GUR3DBF.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO | |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 363| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (8I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |NINTEPS| Number of sub-intervals per unit of delta epsilon | |:::| Number of sub-steps = MAX(NINTV; NINTEPS*DELTA EPSILON) | |MAXIT| Maximum number of iterations in the N-R scheme | |IKAP| = 0 : Tangent matrix by perturbation (through LOAX3D) | |:::| = 1 : Tangent matrix by perturbation (calculated within the law) | |NTYPHP| Type of hardening | |:::| = 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\bar{\varepsilon}^p)^n$ | |:::| = 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\bar{\varepsilon}^p)]$ | |:::| = 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\bar{\varepsilon}^p)^n$ | |NTYCOA| Void nucleation model | |:::| = 1 : Classic GTN | |:::| = 2 : Bouaziz, Maire approach | |:::| = 3 : Landron approach | |NTYGRO| Void growth model | |:::| = 1 : Classic GTN | |:::| = 2 : Bouaziz, Maire approach | |NTYCOA| Void coalescence model | |:::| = 1 : Classic GTN | |:::| = 2 : Brown and Embury (not ready) | |:::| = 3 : Thomason | ==== Real parameters ==== ^ Line 1 (2G10.0) ^^ |E| YOUNG's elastic modulus | |ANU| POISSON's ratio | ^ Line 2 (3G10.0) ^^ |CK| Coefficient of the hardening law ($K$) | |CN| Strain hardening exponent ($n$) | |CW| Hardening coefficient ($\varepsilon_0$ or $\sigma_0$) | ^ Line 3 (2G10.0) ^^ |CX| First parameter of the kinematic hardening ($C_X.X_{sat}$) | |XSAT| Second parameter of the kinematic hardening ($C_X$) : \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\bar{\dot{\varepsilon}}^p\right)\] | ^ Line 4 (3G10.0) ^^ |R0| Lankford coefficient in the direction 0° | |R45| Lankford coefficient in the direction 45° | |R90| Lankford coefficient in the direction 90° | ^ Line 5 (4G10.0) ^^ |QUN| Initial damage parameter ($q_1$) | |QDEUX| Initial damage parameter ($q_2$)| |QTR| Initial damage parameter ($q_3$)| |F0| Initial porosity ($f_0$)| ^Void nucleation parameters (3G10.0)^^ |**If NTYNUC = 1** || |FNUC| Nucleation parameter ($f_N$) | |SNUC| Nucleation parameter ($S_N$) | |ENUC| Nucleation parameter ($\varepsilon_N$) | |**If NTYNUC = 2**|| |AA0| $A$ : Number of nucleated voids per mm$^3$ | |EPSN0| $\varepsilon_{N0}$ : Critical strain for pure shear loading | |**If NTYNUC = 3** || |BB0| Material parameter ($B$) | |NN0| Initial number of voids per unit volume ($N_0$) | |SCRITM| Critical shear stress ($\sigma_C$) | ^Void growth parameters (3G10.0)^^ |**If NTYGRO = 2 or NTYGRO = 3**|| |RRi0| = $R_0^i$ : Initial mean radius | ^Void coalescence parameters (3G10.0)^^ |**If NTYCOA = 1** || |FCRIT| Coalescence parameter ($f_c$) | |FFAIL| Coalescence parameter ($f_U$) | ===== Stresses ===== ==== Number of stresses ==== 6 ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{yz}$| |SIG(6)|$\sigma_{xz}$| ===== State variables ===== ==== Number of state variables ==== 25 ==== List of state variables ==== |Q(1)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic | |Q(2)| Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$ \\ (not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium) | |Q(3)$\rightarrow$Q(8)| The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$ | |Q(9)$\rightarrow$Q(14)| The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$ | |Q(15)| $f^*$ : (Effective) void volume fraction | |Q(16)| $T$ : triaxiality (without backstress) | |Q(17)| $\omega$ : Lode angle (Nahshon and Hutchinson, 2008) (not used) | |Q(18)| $\varepsilon^p_{eqa}$ : Equivalent macroscopic plastic strain | |Q(19)| $q$ : Effective eq. macroscopic stress | |Q(20)| $p$ : Hydrostatic stress | |Q(21)| $f$ : Void volume fraction | |Q(22)| $N$ : Number of nucleated voids | |Q(23)| $f_N$ : Porosity (Nucleation contribution) | |Q(24)| $R$ : The updated void radius | |Q(25)| $\ln(R_T/T_{T0})$ where $R_T$ and $R_{T0}$ are are the current and initial radius of the single equivalent porosity | |Q(26)| $R_T$ : Radius of the single void cavity at the end of the time increment | |Q(27)| $q_2$ | |Q(28)| $q_1=1.5\; q_2$ | |Q(29)| $q_3 = q_1^2$ | Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.\\