3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus and growth of voids. Rupture criterion applied on porous ductile materials (GURSON model).
Prepro: LGUR3.F
Lagamine: GUR3DCLAS/GUR2ACLAS.F
Plane stress state | NO |
Plane strain state | NO |
Axisymmetric state | YES (GUR2ACLAS) |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 357 (axi) and 360 (3D) |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (3I5) | |
---|---|
NINTV | = 0 : Not used |
IKAP | = 0 : Tangent matrix by perturbation (through LOAX3D) |
= 1 : Tangent matrix by perturbation (calculated within the law) | |
NTYPHP | Type of hardening |
= 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\bar{\varepsilon}^p)^n$ | |
= 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\bar{\varepsilon}^p)]$ | |
= 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\bar{\varepsilon}^p)^n$ |
Line 1 (2G10.0) | |
---|---|
E | YOUNG's elastic modulus |
ANU | POISSON's ratio |
Line 2 (3G10.0) | |
SIGO | Coefficient of the hardening law ($K$) |
DN | Strain hardening exponent ($n$) |
EPS0 | Hardening coefficient ($\varepsilon_0$ or $\sigma_0$) |
Line 3 (2G10.0) | |
HKIN | First parameter of the kinematic hardening ($C_X.X_{sat}$) |
HNL | Second parameter of the kinematic hardening ($C_X$) : \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\bar{\dot{\varepsilon}}^p\right)\] |
Line 4 (3G10.0) | |
R0 | Lankford coefficient in the direction 0° |
R45 | Lankford coefficient in the direction 45° |
R90 | Lankford coefficient in the direction 90° |
Line 5 (4G10.0) | |
QUN | Damage parameter ($q_1$) |
QDEUX | Damage parameter ($q_2$) |
QTR | Damage parameter ($q_3$) |
F0 | Initial porosity |
4 (axi)
6 (3D)
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
GUR3DCLAS :
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
SIG(5) | $\sigma_{yz}$ |
SIG(6) | $\sigma_{xz}$ |
GUR2ACLAS :
SIG(1) | $\sigma_{xx}$ |
SIG(2) | $\sigma_{yy}$ |
SIG(3) | $\sigma_{zz}$ |
SIG(4) | $\sigma_{xy}$ |
13 (axi)
16 (3D)
GUR3DCLAS :
Q(1) | = 0 : Current state is elastic |
= 1 : Current state is elasto-plastic | |
Q(2) | Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$ |
(not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium) | |
Q(3)$\rightarrow$Q(8) | The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$ |
Q(9)$\rightarrow$Q(14) | The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$ |
Q(15) | f : the void porosity fraction |
Q(16) | T: triaxiality |
Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.
GUR2ACLAS :
Q(2) | = 0 : Current state is elastic |
= 1 : Current state is elasto-plastic | |
Q(3) | Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$ |
Q(4)$\rightarrow$Q(7) | The four components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$ |
Q(8)$\rightarrow$Q(11) | The four components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$ |
Q(12) | f : the void porosity fraction |
Q(13) | T: triaxiality |