====== EP-GTNB ====== ===== Description ===== 3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus and growth of voids. Rupture criterion applied on porous ductile materials (GURSON model). ==== The model ==== * Mixed hardening and plastic anisotropy. * Reproducing of the damage evolution (which is predicted by the experiments) by fitting the parameter q2 (GTNB q2=constant, GTNB2 q2=state variable) * All the state variables are integrated implicitly. * Analytical computation of the consistent tangent modulus (See IJNME 2011:85:1049-1072). ==== Files ==== Prepro: LGUR3.F \\ Lagamine: GUR3DCLAS/GUR2ACLAS.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO | |Axisymmetric state| YES (GUR2ACLAS)| |3D state| YES| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 357 (axi) and 360 (3D)| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |NINTV| = 0 : Not used | |IKAP| = 0 : Tangent matrix by perturbation (through LOAX3D) | |:::| = 1 : Tangent matrix by perturbation (calculated within the law) | |NTYPHP| Type of hardening | |:::| = 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\bar{\varepsilon}^p)^n$ | |:::| = 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\bar{\varepsilon}^p)]$ | |:::| = 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\bar{\varepsilon}^p)^n$ | ==== Real parameters ==== ^ Line 1 (2G10.0) ^^ |E| YOUNG's elastic modulus | |ANU| POISSON's ratio | ^ Line 2 (3G10.0) ^^ |SIGO| Coefficient of the hardening law ($K$) | |DN| Strain hardening exponent ($n$) | |EPS0| Hardening coefficient ($\varepsilon_0$ or $\sigma_0$) | ^ Line 3 (2G10.0) ^^ |HKIN| First parameter of the kinematic hardening ($C_X.X_{sat}$) | |HNL| Second parameter of the kinematic hardening ($C_X$) : \[\dot{\underline{X}} = C_X\left(X_{sat}\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\bar{\dot{\varepsilon}}^p\right)\] | ^ Line 4 (3G10.0) ^^ |R0| Lankford coefficient in the direction 0° | |R45| Lankford coefficient in the direction 45° | |R90| Lankford coefficient in the direction 90° | ^ Line 5 (4G10.0) ^^ |QUN| Damage parameter ($q_1$) | |QDEUX| Damage parameter ($q_2$)| |QTR| Damage parameter ($q_3$)| |F0| Initial porosity | ===== Stresses ===== ==== Number of stresses ==== 4 (axi) \\ 6 (3D) ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ GUR3DCLAS : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{yz}$| |SIG(6)|$\sigma_{xz}$| GUR2ACLAS : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| ===== State variables ===== ==== Number of state variables ==== 13 (axi) \\ 16 (3D) ==== List of state variables ==== GUR3DCLAS : |Q(1)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic | |Q(2)| Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$ | |:::| (not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium) | |Q(3)$\rightarrow$Q(8)| The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$ | |Q(9)$\rightarrow$Q(14)| The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$ | |Q(15)| f : the void porosity fraction | |Q(16)| T: triaxiality | Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.\\ GUR2ACLAS : |Q(2)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic | |Q(3)| Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$ | |Q(4)$\rightarrow$Q(7)| The four components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$ | |Q(8)$\rightarrow$Q(11)| The four components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$ | |Q(12)| f : the void porosity fraction | |Q(13)| T: triaxiality |