Table of Contents

EP-GTNB2

Description

3D elasto-plastic constitutive combining isotropic and kinematic hardening, anisotropic yield locus, nucleation and growth of voids. Rupture criterion applied on porous ductile materials (GURSON model).

The model

Files

Prepro: LGUR3.F
Lagamine: GUR3DANI/GUR2DANI.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES (GUR2DANI)
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 358 (axi) and 361 (3D)
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (I5)
NINTV = 0 : Not used
IKAP = 0 : Tangent matrix by perturbation (through LOAX3D)
= 1 : Tangent matrix by perturbation (calculated within the law)
NTYPHP Type of hardening
= 1 : Swift law : $\sigma_Y = K(\varepsilon_0+\bar{\varepsilon}^p)^n$
= 2 : Voce law : $\sigma_Y = \sigma_0 + K[1-\exp(-n.\bar{\varepsilon}^p)]$
= 3 : Ludwik : $\sigma_Y = \sigma_0 + K(\bar{\varepsilon}^p)^n$

Real parameters

Line 1 (2G10.0/3G10.0/2G10.0/3G10.0/7G10.0/2G10.0)
E YOUNG's elastic modulus
ANU POISSON's ratio
Line 2 (3G10.0)
SIGO Coefficient of the hardening law ($K$)
DN Strain hardening exponent ($n$)
EPS0 Hardening coefficient ($\varepsilon_0$ or $\sigma_0$)
Line 3 (2G10.0)
HKIN First parameter of the kinematic hardening ($C_X.X_{sat}$)
HNL Second parameter of the kinematic hardening ($C_X$) : \[\dot{\underline{X}} = C_X\left(s\;\dot{\underline{\varepsilon}}^p-\underline{X}\;\bar{\dot{\varepsilon}}^p\right)\]
Line 4 (3G10.0)
R0 Lankford coefficient in the direction 0°
R45 Lankford coefficient in the direction 45°
R90 Lankford coefficient in the direction 90°
Line 5 (7G10.0)
QUN Damage parameter ($q_1$)
QDEUX Damage parameter ($q_2$)
QTR Damage parameter ($q_3$)
F0 Initial porosity
EPSN0 Related to Bouaziz equation of void nucleation : $\varepsilon_n=\varepsilon_{n0}\;\exp(-T)$
AA0 Constant equal to 5000 voids/mm$^3$ for calculation of N (number of nucleated voids per mm$^3$)
RR0 Initial radius of a singular void
Line 6 (2G10.0)
AB Thomason parameter (not used)
BETA Thomason parameter (not used)

Stresses

Number of stresses

4 (axi)
6 (3D)

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

GUR3DANI :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{yz}$
SIG(6)$\sigma_{xz}$

GUR2DANI :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$

State variables

Number of state variables

22 (axi)
25 (3D)

List of state variables

GUR3DCLAS :

Q(1) = 0 : Current state is elastic 
= 1 : Current state is elasto-plastic
Q(2) Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$
(not $\varepsilon_{eqa}^p$, which is the equivalent plastic strain of the macroscopic medium)
Q(3)$\rightarrow$Q(8) The six components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$, $\underline{\varepsilon}_{13}^p$, $\underline{\varepsilon}_{23}^p$
Q(9)$\rightarrow$Q(14) The six components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$, $X_{13}$, $X_{23}$
Q(15) f : the void porosity fraction
Q(16) T: triaxiality
Q(17) The equivalent macroscopic plastic strain
Q(18) = N : Number of nucleated voids
Q(19) The volume of the equivalent single void
Q(20) The updated void radius computed by the integration equation
Q(21) $q_2$
Q(22) $q_1=1.5\;q_2$
Q(23) $q_3=(1.5\;q_2)^2$
Q(24) ln=(RT/RT0) where RT and RT0 are are the current and initial radius of the single equivalent porosity
Q(25) RT radius of the single void cavity at the end of the time increment

Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.

GUR2ACLAS :

Q(2) = 0 : Current state is elastic
= 1 : Current state is elasto-plastic
Q(3) Equivalent plastic strain in the matrix $\sigma_Y = K(\varepsilon_0+\varepsilon_m^p)^n$
Q(4)$\rightarrow$Q(7) The four components of the macroscopic plastic strain : $\underline{\varepsilon}_{11}^p$, $\underline{\varepsilon}_{22}^p$, $\underline{\varepsilon}_{33}^p$, $\underline{\varepsilon}_{12}^p$
Q(8)$\rightarrow$Q(11) The four components of the macroscopic backstress : $X_{11}$, $X_{22}$, $X_{33}$, $X_{12}$
Q(12) f : the void porosity fraction
Q(13) T: triaxiality
Q(14) The equivalent macroscopic plastic strain
Q(15) N : Number of nucleated voids
Q(16) The volume of the equivalent single void
Q(17) The updated void radius computed by the integration equation
Q(18) $q_2$
Q(19) $q_1=1.5\;q_2$
Q(20) $q_3=(1.5\;q_2)^2$
Q(21) ln=(RT/RT0). where RT and RT0 are are the current and initial radius of the single equivalent porosity
Q(22) RT radius of the single void cavity at the end of the time increment 

Qtrial : anisotropic equivalent shifted stress with HILL criterion calculation.