Table of Contents

EP-ELLI

Description

Elliptic elasto-plastic constitutive law for solid elements at constant temperature

The model

Mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. Dilatancy is included through an elliptic yield surface relating the mean stress and the von MISES equivalent stress. Isotropic hardening is assumed.

Files

Prepro: LELLI.F
Lagamine: ELLI2EA.F, ELLI3D.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO (?)
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 73
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (9I5)
NINTV > 0: number of sub-steps used to integrate numerically the constitutive equation in a time step.
= 0: NINTV will be calculated in the law with DIV=$5*10^{-3}$
ISOL = 0: use of total stresses in the constitutive law
≠ 0: use of effective stresses in the constitutive law. See Appendix 8
IELA = 0 Linear elasticity
> 1 Non linear elasticity
ILODEF Shape of the yield surface in the deviatoric plane
= 1: circle in the deviatoric plane
= 2: smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : Associated plasticity
ICBIFComputation indice of bifurcation criterion
= 0: non computed
= 1: computed (plane strain state only)
IECROU = 2 Volumetric strain hardening (including softening)
KMETH = 2 Actualised VGRAD integration
= 3 Mean VGRAD integration (Default value)
IPCONS = 0 Definition of pre-consolidation pressure
≠ 0 Definition of OCR

Real parameters

Line 1 (7G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
HARD Hardening parameter
PCONS0 Preconsolidation pressure (If IPCONS=0)
OCR Over Consolidation Ratio (If IPCONS<>0 , see IPCONS parmeter)
Line 2 (7G10.0)
AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
PHIC Coulomb's angle (in degrees) for compressive paths
PHIE Coulomb's angle (in degrees) for extensive paths
AN Van Eekelen exponent (default value=-0.229)
COH Cohesion value
POROS initial soil porosity ($n_{0}$)
RHO Specific mass
DIVparameter for the computation of NINTV in the law (for NINTV = 0 only).

Stresses

Number of stresses

6 for the 3-D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the other cases:

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{XY}$
SIG(4)$\sigma_{ZZ}$

State variables

Number of state variables

27: for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
15: in all the other cases

List of state variables

Q(1) 1 in plane strain state
circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) actualized specific mass
Q(3) 0 if the current state is elastic
1 if the current state is elasto-plastic
Q(4) plastic work per unit volume ($W^{p}$)
Q(5) actualised value of porosity
Q(6) equivalent strain n$\circ$1 $\varepsilon_{eq1} = \int {\Delta \dot{\varepsilon}_{eq} \Delta t}$
Q(7) Updated value of preconsolidation pressure $p_{0}$
Q(8) equivalent strain indicator n$\circ$1 (Villote n$\circ$1) $\alpha_{1} = (\Delta \dot{\varepsilon}_{eq} \Delta t )/ \varepsilon_{eq1} $
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) number of sub-intervals used for the integration
Q(15) memory of localisation calculated during the re-meshing
Q(16) $\rightarrow$ Q(27) reserved for bifurcation

Hardening forms

ITYLA = 2: volumic strain hardening \[Dp_{0}=- ECRO p_{0} \varepsilon_{\nu}^{p} \] Sign dependent on the consolidation stress.
Softening is possible.

Elastic forms

IELA = 0: linear elasticity

E_PAR1E : Young's Elastic modulus
E_PAR2 ANU : Poisson's ratio
E_PAR3 not used
E_PAR4 not used
HARD ECRO : Hardening parameter

IELA = 1: non linear elasticity

E_PAR1KAPPA : Elastic slope in oedometer path
E_PAR2ANU : Poisson's ratio
E_PAR3not used
E_PAR4 not used
HARD LAMBDA : Plastic slope in oedometer path
ECRO $\frac{1+e_{0}}{\lambda - \kappa}$

IELA = 2: non linear elasticity

E_PAR1KAPPA : Elastic slope in oedometer path
E_PAR2 G0: Shear modulus
E_PAR3not used
E_PAR4not used
HARDLAMBDA : Plastic slope in oedometer path
ECRO$\frac{1+e_{0}}{\lambda - \kappa}$

IELA = 3: non linear elasticity

E_PAR1 KAPPA : Elastic slope in oedometer path
E_PAR2 K0 : Minimum value of the bulk modulus
E_PAR3 G0 : Shear modulus
E_PAR4ALPHA2
HARDLAMBDA : Plastic slope in oedometer path
ECRO$\frac{1+e_{0}}{\lambda - \kappa}$

IELA = 4: non linear elasticity

E_PAR1K0: Minimum value of the bulk modulus
E_PAR2n: n parameter
E_PAR3G0: Shear modulus
E_PAR4 Patm : Atmospheric pressure
HARD
ECROHARD

IELA = 5: non linear elasticity

E_PAR1 $\nu$: Poisson’s ration
E_PAR2 n: n parameter
E_PAR3 G0: Shear modulus
E_PAR4 Patm: Atmospheric pressure
HARD

ECRO = HARD

IPCONS parameter

IPCONS = 0:$p_{0}=$PCONS0

IPCONS = 1: $p_{0}=\sigma_{v}.OCR$

IPCONS = 2: $p_{0}=p_{0}(\sigma, cohesion, \phi). OCR$

Where $ p_{0}$($\sigma$, cohesion, $\phi$) = $\Big[ \frac{-II_{\hat{\sigma}}^{2}}{m^{2}(I_{\sigma} - \frac{3c}{tg\phi}}-I_{\sigma} \Big]$ /3