====== EP-ELLI====== ===== Description ===== Elliptic elasto-plastic constitutive law for solid elements at constant temperature ==== The model ==== Mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. Dilatancy is included through an elliptic yield surface relating the mean stress and the von MISES equivalent stress. Isotropic hardening is assumed. ==== Files ==== Prepro: LELLI.F \\ Lagamine: ELLI2EA.F, ELLI3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| NO (?)| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 73| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^Line 1 (9I5)^^ |NINTV| > 0: number of sub-steps used to integrate numerically the constitutive equation in a time step. \\ = 0: NINTV will be calculated in the law with DIV=$5*10^{-3}$| |ISOL| = 0: use of total stresses in the constitutive law \\ ≠ 0: use of effective stresses in the constitutive law. See [[appendices:a8|Appendix 8]]| |IELA| = 0 Linear elasticity \\ > 1 Non linear elasticity| |ILODEF| Shape of the yield surface in the deviatoric plane \\ = 1: circle in the deviatoric plane \\ = 2: smoothed irregular hexagon in the deviatoric plane| |ILODEG| Not used : Associated plasticity| |ICBIF|Computation indice of bifurcation criterion\\ = 0: non computed \\ = 1: computed (plane strain state only)| |IECROU| = 2 Volumetric strain hardening (including softening) | |KMETH| = 2 Actualised VGRAD integration \\ = 3 Mean VGRAD integration (Default value)| |IPCONS| = 0 Definition of pre-consolidation pressure \\ ≠ 0 Definition of OCR| ==== Real parameters ==== ^Line 1 (7G10.0)^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter| |E_PAR3| Third elastic parameter| |E_PAR4| Fourth elastic parameter| |HARD| Hardening parameter| |PCONS0| Preconsolidation pressure (If IPCONS=0)| |OCR| Over Consolidation Ratio (If IPCONS<>0 , see [[laws:EPELLI# IPCONS parameter |IPCONS parmeter]])| ^Line 2 (7G10.0)^^ | AI1MIN| Minimum value of $I_{\sigma}$ for non-linear elasticity| | PHIC| Coulomb's angle (in degrees) for compressive paths| | PHIE| Coulomb's angle (in degrees) for extensive paths| |AN| Van Eekelen exponent (default value=-0.229)| |COH| Cohesion value| |POROS| initial soil porosity ($n_{0}$)| |RHO| Specific mass| |DIV|parameter for the computation of NINTV in the law (for NINTV = 0 only). | ===== Stresses ===== ==== Number of stresses ==== 6 for the 3-D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the other cases: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{XY}$| |SIG(4)|$\sigma_{ZZ}$| ===== State variables ===== ==== Number of state variables ==== 27: for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ 15: in all the other cases ==== List of state variables ==== |Q(1)| 1 in plane strain state \\ circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| actualized specific mass| |Q(3)| 0 if the current state is elastic \\ 1 if the current state is elasto-plastic| |Q(4)| plastic work per unit volume ($W^{p}$)| |Q(5)| actualised value of porosity| |Q(6)| equivalent strain n$\circ$1 $\varepsilon_{eq1} = \int {\Delta \dot{\varepsilon}_{eq} \Delta t}$| |Q(7)| Updated value of preconsolidation pressure $p_{0}$ | |Q(8)| equivalent strain indicator n$\circ$1 (Villote n$\circ$1) $\alpha_{1} = (\Delta \dot{\varepsilon}_{eq} \Delta t )/ \varepsilon_{eq1} $| |Q(9)| X deformation| |Q(10)| Y deformation| |Q(11)| Z deformation| |Q(12)| XY deformation| |Q(13)| Volumetric strain| |Q(14)| number of sub-intervals used for the integration| |Q(15)| memory of localisation calculated during the re-meshing| |Q(16) $\rightarrow$ Q(27)| reserved for bifurcation| ==== Hardening forms ==== __ITYLA = 2: volumic strain hardening__ \[Dp_{0}=- ECRO p_{0} \varepsilon_{\nu}^{p} \] Sign dependent on the consolidation stress.\\ Softening is possible.\\ ==== Elastic forms==== __IELA = 0: linear elasticity__\\ |E_PAR1|E : Young's Elastic modulus| |E_PAR2 |ANU : Poisson's ratio| |E_PAR3 |not used| |E_PAR4 |not used| |HARD |ECRO : Hardening parameter| __IELA = 1: non linear elasticity__\\ |E_PAR1|KAPPA : Elastic slope in oedometer path| |E_PAR2|ANU : Poisson's ratio| |E_PAR3|not used| |E_PAR4 |not used| |HARD |LAMBDA : Plastic slope in oedometer path| |ECRO |$\frac{1+e_{0}}{\lambda - \kappa}$| __IELA = 2: non linear elasticity__\\ |E_PAR1|KAPPA : Elastic slope in oedometer path| |E_PAR2 |G0: Shear modulus| |E_PAR3|not used| |E_PAR4|not used| |HARD|LAMBDA : Plastic slope in oedometer path| |ECRO|$\frac{1+e_{0}}{\lambda - \kappa}$| __IELA = 3: non linear elasticity__\\ |E_PAR1 |KAPPA : Elastic slope in oedometer path| |E_PAR2 |K0 : Minimum value of the bulk modulus| |E_PAR3 |G0 : Shear modulus| |E_PAR4|ALPHA2| |HARD|LAMBDA : Plastic slope in oedometer path| |ECRO|$\frac{1+e_{0}}{\lambda - \kappa}$| __IELA = 4: non linear elasticity__\\ |E_PAR1|K0: Minimum value of the bulk modulus| |E_PAR2|n: n parameter| |E_PAR3|G0: Shear modulus| |E_PAR4 |Patm : Atmospheric pressure| |HARD| | |ECRO|HARD| __IELA = 5: non linear elasticity__\\ |E_PAR1 |$\nu$: Poisson’s ration| |E_PAR2 |n: n parameter| |E_PAR3| G0: Shear modulus| |E_PAR4 |Patm: Atmospheric pressure| |HARD|| ECRO = HARD ==== IPCONS parameter ==== __IPCONS = 0__:$p_{0}=$PCONS0 __IPCONS = 1__: $p_{0}=\sigma_{v}.OCR$ __IPCONS = 2__: $p_{0}=p_{0}(\sigma, cohesion, \phi). OCR$ Where $ p_{0}$($\sigma$, cohesion, $\phi$) = $\Big[ \frac{-II_{\hat{\sigma}}^{2}}{m^{2}(I_{\sigma} - \frac{3c}{tg\phi}}-I_{\sigma} \Big]$ /3