====== EP-ELL====== ===== Description ===== Elliptic elasto-plastic constitutive law for solid elements at constant temperature ==== The model ==== Mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. \\ Dilatancy is included through an elliptic yield surface relating the mean stress and the von MISES equivalent stress. Isotropic hardening is assumed. ==== Files ==== Prepro: LELL.F \\ Lagamine: ELL2EA.F, ELL3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| YES| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 70| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^Line 1 (4I5)^^ |NINTV| > 0: number of sub-steps used to integrate numerically the constitutive equation in a time step. \\ = 0: NINTV will be calculated in the law with DIV=$5*10^{-3}$| |ISOL| = 0 : use of total stresses in the constitutive law \\ $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:a8|Appendix 8]]| |ITYLA| = 0 : unlimited work hardening \\ = 1: hyperbolic work hardening\\ = 2: volumic strain hardening (including softening)| |ICBIF|Computation indice of bifurcation criterion\\ = 0 : non computed \\ = 1 : computed (plane strain state only)| ==== Real parameters ==== ^Line 1 (7G10.0)^^ |E| YOUNG's elastic modulus | |ANU| POISSON's ratio| |COULB|tangent of COULOMB's angle (= ratio between the short diameter and the long diameter of the ellipse = m) | |ECRO1|hardening rate (= d2a/dg) voir ci-dessous| |ECRO2|hardening rate (= d2a/dg) voir ci-dessous| |DEUSA|initial value of the long diameter of the ellipse (=2$a_{0}$)| |POROS| initial soil porosity ($n_{0}$)| ^Line 2 (2G10.0)^^ |DIV|parameter for the computation of NINTV in the law (for NINTV = 0 only). | |RHO| Specific mass| ===== Stresses ===== ==== Number of stresses ==== 6 for the 3-D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ {{ :laws:ep-ell_stresses.png?400|}} For the 3-D state: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| |SIG(5)|$\sigma_{XZ}$| |SIG(6)|$\sigma_{YZ}$| For the other cases: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{XY}$| |SIG(4)|$\sigma_{ZZ}$| ===== State variables ===== ==== Number of state variables ==== 19 (for EP$\varepsilon$)\\ 6 (for the other cases) ==== List of state variables ==== |Q(1)| 1 in plane strain state \\ circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state \\ 0 in 3-D state| |Q(2)| current value of the long diameter of the ellipse \\ its initial value is 2$a_{0}$| |Q(3)| 0 if the current state is elastic \\ 1 if the current state is elasto-plastic| |Q(4)| plastic work per unit volume ($\varepsilon_{\nu}^{p}$ si ITYLA = 2)| |Q(5)| current value of soil porosity \\ its initial value is $n_{0}$)| |Q(6)| somme des $\dot{\varepsilon}_{\nu} dt$| |Q(7)| PSNIV| |Q(8)| actualised specific mass| |Q(9) $\rightarrow$ Q(20)| modulus for the analysis of bifurcation (only for EP$\varepsilon$)| ==== Hardening forms ==== __ITYLA = 0 : monotonic work hardening __ {{ :laws:ityla0_ep-ell.png?300 |}} \[\frac{d2a}{d\lambda} = ECRO1\] \[$\lambda$] = $[\sigma]^{-1}\] __ITYLA = 1: hyperbolic work hardening (with asymptotic maximum)__ {{ :laws:ityla1_ep-ell.png?300 |}} \[2a = 2a_{0} + \frac{ECRO1 * 1}{ECRO2*\lambda +1}\] \[\frac{d2a}{d\lambda} = \frac{ECRO1}{(ECRO2*\lambda +1)^{2}}\] \[2 a_{max} = 2 a_{0} + \frac{ECRO1}{ECRO2}\] __ITYLA = 2: volumic strain hardening__ \[da = ECRO1*d\varepsilon_{\nu}^{p} \] Sign dependent on the consolidation stress.\\ Softening is possible.\\