Table of Contents

EP-DAM

Description

Elasto-plastic isotropic constitutive law with damage for solid elements at constant temperature endochronic

The model

This law is used for mechanical analysis of elasto‑plastic isotropic solids undergoing large strains, taking account of internal damage generated by plastic strains. Plastic isotropic hardening is assumed.

Files

Prepro: LEPDAM.F
Lagamine: ENDO2A.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 220
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (I5)
NINTV number of sub-steps used to integrate numerically the constitutive equation in a time step.

Real parameters

Line 1 (7G10.0)
E YOUNG’s elastic modulus
ANU Poisson ratio
TAU ratio of volumetric damage to deviatoric damage $(=\tau)$
AG rate of deviatoric damage $(=a_G)$
RE initial yield limit $(=R_e)$
AK hardening coefficient $(=k)$
AN hardening exponent $(=n)$

Stresses

Number of stresses

= 6 for the 3‑D state
= 4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases :

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 9

List of state variables

Q(1) = element thickness (t) in plane stress state
= 1 in plane strain state
= circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state
= 0 in 3‑D state
= element thickness (t) in generalized plane state
Q(2) = 0 if the current state is elastic
= 1 if the current state is elasto‑plastic
Q(3)equivalent plastic strain $(\varepsilon_p)$
Q(4) amount of deviatoric damage (= d)
Q(5) amount of volumetric damage (= `U)
Q(6) thermodynamic reaction conjugated to deviatoric damage $(=Y_d)$
Q(7) thermodynamic reaction conjugated to deviatoric damage $(=Y_{\delta})$
Q(8) hardening level (R)
Q(9) damage level (B)