Table of Contents

EP-CHEMSOL

Description

Cap model : elasto-plastic constitutive law for solid elements at constant temperature with effect of contaminant concentration.

The model

This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains.

Files

Prepro: LCHEM.F
Lagamine: CHEM.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 570
COMMNT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (11I5)
NINTV > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step
= 0 : NINTV will be calculated in the law with DIV=$5.10^{-3}$
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law (See annex 8)
IELA = 0 : Linear elasticity
> 0 : Non-linear elasticity
IELAS = 0 : Constant BETA
> 0 : Variable BETA
ILODEF Shape of the yield surface in the deviatoric plane
= 1 : Circle in the deviatoric plane
= 2 : Smoothed irregular hexagon in the deviatoric plane
ILODEG Not used : Associated plasticity
ITRACT = 0 : No traction limitation
$\neq$ 0 : Traction stresses limitation
IECPS = 0 : $\psi$ is defined with PSIC and PSIE
= 1 : $\psi$ is defined with PHMPS
ICBIF Computation indice of bifurcation criterion
= 0 : Non computed
= 1 : Computed (plane strain state only)
KMETH = 2 : Actualised VGRAD integration
= 3 : Mean VGRAD integration (Default value)
IPCONS = 0 :Definition of pre-consolidation pressure
$\neq$ 0 : Definition of OCR

Real parameters

Line 1 (5G10.0)
E_PAR1 First elastic parameter
E_PAR2 Second elastic parameter
E_PAR3 Third elastic parameter
E_PAR4 Fourth elastic parameter
HARD Hardening parameter
Line 2 (6G10.0)
PCONS0 Pre-consolidation pressure (if IPCONS=0)
OCR Over Consolidation Ratio (if IPCONS<>0, see section 6.5)
AI1MIN Minimum value of $I_{\sigma}$ for non-linear elasticity
PSIC Coulomb's angle (in degrees) for compressive paths
PSIE Coulomb's angle (in degrees) for extensive paths
PHMPS Van Eekelen exponent (default value=-0.229)
Line 3 (6G10.0)
PHIC0 Initial Coulomb's angle (in degrees) for compressive paths
PHICF Final Coulomb's angle (in degrees) for compressive paths
BPHI Only if there is hardening/softening
PHIE0 Initial Coulomb’s angle (in degrees) for extensive paths
PHIEF Final Coulomb’s angle (in degrees) for extensive paths (ssi ILODEF = 2)
AN Van Eekelen exponent (default value=-0.229)
Line 4 (4G10.0)
COH0 Initial value of cohesion
COHF Final value of cohesion
BCOH Only if there is hardening/softening
TRACTION Limit of the traction stress (only if ITRACT$\neq$0)
Line 5 (3G10.0)
POROS Initial soil porosity ($n_o$)
RHO Specific mass
DIV Parameter for the computation of NINTV in the law (for NINTV = 0 only)
Line 6 (3G10.0)
C0 Yield limit in term of concentration. This is not used at present in the model, so C0 should be given a large value (>1) so that yielding never takes place 
A Chemical softening parameter
BETA Chemo-elastic expansion coefficient BETA if it is constant (IELAS=0)
Line 7 (3G10.0)
k Evolution of cohesion with concentration ($c(c) = c(0) + k.c$)
BETA0 First parameter of chemo-elastic expansion coefficient BETA
F0 Second parameter of chemo-elastic expansion coefficient BETA

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

= 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1)
= 24 in all the other cases

List of state variables

Q(1) =1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
Q(2) Actualised specific mass
Q(3) = 0 : Current state is elastic
= 1 : Current state is elasto-plastic (Friction mechanism)
= 2 : Current state is elasto-plastic (Pore collapse mechanism)
= 3 : Current state is elasto-plastic (Traction mechanism)
= 4 : Current state is elasto-plastic (Friction + pore mechanisms)
= 5 : Current state is elasto-plastic (Friction + traction mechanisms)
Q(4) Plastic work per unit volume ($W^p$)
Q(5) Actualised value of porosity
Q(6) Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$
Q(7) Updated value of pre-consolidation pressure $p_c$
Q(8) Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$
Q(9) X deformation
Q(10) Y deformation
Q(11) Z deformation
Q(12) XY deformation
Q(13) Volumetric strain
Q(14) Deviatoric strain
Q(15) Actualised value of cohesion
Q(16) Actualised value of frictional angle in compression path ($\phi_C$)
Q(17) Actualised value of frictional angle in extension path ($\phi_E$)
Q(18) Apex criterion
Q(19) Actualised value of BETA
Q(20) Actualised value of C0 (NOT USED AT PRESENT)
Q(21) Updated value of pre-consolidation pressure at zero concentration $p_c^*$
Q(22) Number of sub-intervals used for the integration
Q(23) Number of iteration used for the integration
Q(24) Memory of localisation calculated during the re-meshing
Q(25)$\rightarrow$Q(36) Reserved for bifurcation

Hardening forms

ITYLA=2 : Volumetric strain hardening : \[dp_0=-ECRO\;p_0\;\varepsilon_v^p\] where the sign is dependent on the consolidation stress. Softening is possible.

Elastic forms

IELA = 0 : Linear elasticity

E_PAR1 E : Young's Elastic modulus
E_PAR2 ANU : Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD ECRO : Hardening parameter

IELA = 1 : Non Linear elasticity

E_PAR1 KAPPA : Elastic slope in oedometer path
E_PAR2 ANU : Poisson's ratio
E_PAR3 Not used
E_PAR4 Not used
HARD LAMBDA : Plastic slope in oedometer path

\[ECRO=\frac{1+e_0}{\lambda-\kappa}\]

IELA = 2 : Non Linear elasticity

|E_PAR1| KAPPA : Elastic slope in oedometer path |

E_PAR2 G0 : Shear modulus
E_PAR3 Not used
E_PAR4 Not used
HARD LAMBDA : Plastic slope in oedometer path

\[ECRO=\frac{1+e_0}{\lambda-\kappa}\]

IELA = 3 : Non Linear elasticity

E_PAR1 KAPPA : Elastic slope in oedometer path
E_PAR2 K0 : Minimum value of the bulk modulus
E_PAR3 G0 : Shear modulus
E_PAR4 ALPHA2
HARD LAMBDA : Plastic slope in oedometer path

\[ECRO=\frac{1+e_0}{\lambda-\kappa}\]

IELA = 4 : Non Linear elasticity

|E_PAR1| K0: Minimum value of the bulk modulus |

E_PAR2 n : n parameter
E_PAR3 G0 : Shear modulus
E_PAR4 Patm : Atmospheric pressure
HARD

\[ECRO = HARD\]

IELA = 5 : Non Linear elasticity

|E_PAR1| $\nu$ : Poisson’s ratio |

E_PAR2 n : n parameter
E_PAR3 G0 : Shear modulus
E_PAR4 Patm : Atmospheric pressure
HARD

\[ECRO = HARD\]

IPCONS parameters

IPCONS = 0 : \[p_0 = PCONS0\]

IPCONS = 1 : \[p_0=\sigma_v\;OCR\]

IPCONS = 2 : \[p_0=p_0(\sigma,cohesion,\phi)\;OCR\] where \[p_0(\sigma,cohesion,\phi) = \left[\frac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3\]