====== EP-CHEMSOL ====== ===== Description ===== Cap model : elasto-plastic constitutive law for solid elements at constant temperature with effect of contaminant concentration. ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LCHEM.F \\ Lagamine: CHEM.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 570| |COMMNT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (11I5) ^^ |NINTV| > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : NINTV will be calculated in the law with DIV=$5.10^{-3}$ | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq$ 0 : Use of effective stresses in the constitutive law (See annex 8) | |IELA| = 0 : Linear elasticity | |:::| > 0 : Non-linear elasticity | |IELAS| = 0 : Constant BETA | |:::| > 0 : Variable BETA | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 1 : Circle in the deviatoric plane | |:::| = 2 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Not used : Associated plasticity | |ITRACT| = 0 : No traction limitation | |:::| $\neq$ 0 : Traction stresses limitation | |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE | |:::| = 1 : $\psi$ is defined with PHMPS | |ICBIF| Computation indice of bifurcation criterion | |:::| = 0 : Non computed | |:::| = 1 : Computed (plane strain state only) | |KMETH| = 2 : Actualised VGRAD integration | |:::| = 3 : Mean VGRAD integration (Default value) | |IPCONS| = 0 :Definition of pre-consolidation pressure | |:::| $\neq$ 0 : Definition of OCR | ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |HARD| Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0| Pre-consolidation pressure (if IPCONS=0) | |OCR| Over Consolidation Ratio (if IPCONS<>0, see section 6.5) | |AI1MIN| Minimum value of $I_{\sigma}$ for non-linear elasticity | |PSIC| Coulomb's angle (in degrees) for compressive paths | |PSIE| Coulomb's angle (in degrees) for extensive paths | |PHMPS| Van Eekelen exponent (default value=-0.229) | ^ Line 3 (6G10.0) ^^ |PHIC0| Initial Coulomb's angle (in degrees) for compressive paths | |PHICF| Final Coulomb's angle (in degrees) for compressive paths | |BPHI| Only if there is hardening/softening | |PHIE0| Initial Coulomb’s angle (in degrees) for extensive paths | |PHIEF| Final Coulomb’s angle (in degrees) for extensive paths (ssi ILODEF = 2) | |AN| Van Eekelen exponent (default value=-0.229) | ^ Line 4 (4G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening | |TRACTION| Limit of the traction stress (only if ITRACT$\neq$0) | ^ Line 5 (3G10.0) ^^ |POROS| Initial soil porosity ($n_o$) | |RHO| Specific mass | |DIV| Parameter for the computation of NINTV in the law (for NINTV = 0 only) | ^ Line 6 (3G10.0) ^^ |C0| Yield limit in term of concentration. This is not used at present in the model, so C0 should be given a large value (>1) so that yielding never takes place | |A| Chemical softening parameter | |BETA| Chemo-elastic expansion coefficient BETA if it is constant (IELAS=0) | ^ Line 7 (3G10.0) ^^ |k| Evolution of cohesion with concentration ($c(c) = c(0) + k.c$) | |BETA0| First parameter of chemo-elastic expansion coefficient BETA | |F0| Second parameter of chemo-elastic expansion coefficient BETA | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== = 36 for 2D plane strain analysis with bifurcation criterion (ICBIF=1) \\ = 24 in all the other cases ==== List of state variables ==== |Q(1)| =1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Actualised specific mass | |Q(3)| = 0 : Current state is elastic | |:::| = 1 : Current state is elasto-plastic (Friction mechanism) | |:::| = 2 : Current state is elasto-plastic (Pore collapse mechanism) | |:::| = 3 : Current state is elasto-plastic (Traction mechanism) | |:::| = 4 : Current state is elasto-plastic (Friction + pore mechanisms) | |:::| = 5 : Current state is elasto-plastic (Friction + traction mechanisms) | |Q(4)| Plastic work per unit volume ($W^p$) | |Q(5)| Actualised value of porosity | |Q(6)| Equivalent strain n°1 : $\varepsilon_{eq1}=\int\Delta\dot{\varepsilon}_{eq}\;\Delta t$ | |Q(7)| Updated value of pre-consolidation pressure $p_c$ | |Q(8)| Equivalent strain indicator n°1 (Villote n°1) : $\alpha_1=\frac{\Delta\dot{\varepsilon}_{eq}\;\Delta t}{\varepsilon_{eq1}}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)| Z deformation | |Q(12)| XY deformation | |Q(13)| Volumetric strain | |Q(14)| Deviatoric strain | |Q(15)| Actualised value of cohesion | |Q(16)| Actualised value of frictional angle in compression path ($\phi_C$) | |Q(17)| Actualised value of frictional angle in extension path ($\phi_E$) | |Q(18)| Apex criterion | |Q(19)| Actualised value of BETA | |Q(20)| Actualised value of C0 (NOT USED AT PRESENT) | |Q(21)| Updated value of pre-consolidation pressure at zero concentration $p_c^*$ | |Q(22)| Number of sub-intervals used for the integration | |Q(23)| Number of iteration used for the integration | |Q(24)| Memory of localisation calculated during the re-meshing | |Q(25)$\rightarrow$Q(36)| Reserved for bifurcation | ==== Hardening forms ==== __ITYLA=2 :__ Volumetric strain hardening : \[dp_0=-ECRO\;p_0\;\varepsilon_v^p\] where the sign is dependent on the consolidation stress. Softening is possible. ==== Elastic forms ==== __IELA = 0 :__ Linear elasticity |E_PAR1| E : Young's Elastic modulus | |E_PAR2| ANU : Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| ECRO : Hardening parameter | __IELA = 1 :__ Non Linear elasticity |E_PAR1| KAPPA : Elastic slope in oedometer path | |E_PAR2| ANU : Poisson's ratio | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| LAMBDA : Plastic slope in oedometer path | \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] __IELA = 2 :__ Non Linear elasticity |E_PAR1| KAPPA : Elastic slope in oedometer path | |E_PAR2| G0 : Shear modulus | |E_PAR3| Not used | |E_PAR4| Not used | |HARD| LAMBDA : Plastic slope in oedometer path | \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] __IELA = 3 :__ Non Linear elasticity |E_PAR1| KAPPA : Elastic slope in oedometer path | |E_PAR2| K0 : Minimum value of the bulk modulus | |E_PAR3| G0 : Shear modulus | |E_PAR4| ALPHA2 | |HARD| LAMBDA : Plastic slope in oedometer path | \[ECRO=\frac{1+e_0}{\lambda-\kappa}\] __IELA = 4 :__ Non Linear elasticity |E_PAR1| K0: Minimum value of the bulk modulus | |E_PAR2| n : n parameter | |E_PAR3| G0 : Shear modulus | |E_PAR4| Patm : Atmospheric pressure | |HARD| \[ECRO = HARD\] __IELA = 5 :__ Non Linear elasticity |E_PAR1| $\nu$ : Poisson’s ratio | |E_PAR2| n : n parameter | |E_PAR3| G0 : Shear modulus | |E_PAR4| Patm : Atmospheric pressure | |HARD| \[ECRO = HARD\] ==== IPCONS parameters ==== __IPCONS = 0 :__ \[p_0 = PCONS0\] __IPCONS = 1 :__ \[p_0=\sigma_v\;OCR\] __IPCONS = 2 :__ \[p_0=p_0(\sigma,cohesion,\phi)\;OCR\] where \[p_0(\sigma,cohesion,\phi) = \left[\frac{-II_{\hat{\sigma}}^2}{m^2\left(I_{\sigma}-\frac{3c}{\tan\phi}\right)}-I_{\sigma}\right]/3\]