====== EP-CAPSOL ====== ===== Description ===== CAP MODEL : Elasto-plastic constitutive law for solid elements at constant temperature. \\ ==== The model ==== This law is used for mechanical analysis of elasto-plastic isotropic porous media undergoing large strains. ==== Files ==== Prepro: LCAP.F \\ Lagamine: CAP2EA.F, CAP3D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 79| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (10I5) ^^ |NINTV| > 0 : number of sub-steps used to integrate numerically the constitutive equation in a time step. | |:::| = 0 : NINTV will be calculated in the law with DIV = $5.10^{-3}$| |ISOL| = 0 : use of total stresses in the constitutive law| |:::| $\neq$ 0 : use of effective stresses in the constitutive law. See [[appendices:a8|Appendix 8]] | |IELA| = 0 : Linear elasticity| |:::| > 1 : Non linear elasticity| |ILODEF| Shape of the yield surface in the deviatoric plane : | |:::| = 1 : circle in the deviatoric plane| |:::| = 2 : smoothed irregular hexagon in the deviatoric plane| |ILODEG|Not used : Associated plasticity| |ITRACT| = 0 : No traction limitation| |:::|≠ 0 : Traction stresses limitation| |IECPS| = 0 : $\psi$ is defined with PSIC and PSIE - Not used| |:::| = 1 : $\psi$ is defined with PHMPS - Not used| |ICBIF|Computation indice of bifurcation criterion| |:::| = 0 : non computed| |:::| = 1 : computed (plane strain state only| |KMETH| = 2 : actualised VGRAD integration| |:::| = 3 : Mean VGRAD integration (Default value) | |IPCONS| = 0 Definition of pre-consolidation pressure| |:::|≠ 0 Definition of OCR| ==== Real parameters ==== ^ Line 1 (5G10.0) ^^ |E_PAR1| First elastic parameter | |E_PAR2| Second elastic parameter | |E_PAR3| Third elastic parameter | |E_PAR4| Fourth elastic parameter | |HARD| Hardening parameter | ^ Line 2 (6G10.0) ^^ |PCONS0| Preconsolidation pressure (If IPCONS0=0) | |OCR| Over Consolidation Ratio (If IPCONS0<>0, see section 6.5 | |AI1MIN| Minimum value of $I_\sigma$ for non-linear elasticity | |PSIC| Coulomb's angle (in degrees) for compressive paths -Not used. | |PSIE| Coulomb's angle (in degrees) for extensive paths -Not used. | |PHMPS| Van Eekelen exponent (default value=-0.229) - Not used | ^ Line 3 (6G10.0) ^^ |PHIC0| Initial Coulomb’s angle (in degrees) for compressive paths | |PHICF| Final Coulomb’s angle (in degrees) for compressive paths | |BPHI|Only if there is hardening/softening| |PHIE0| Initial Coulomb’s angle (in degrees) for extensive paths | |PHIEF| Final Coulomb’s angle (in degrees) for extensive paths (psi ILODEF = 2)| |AN| Van Eekelen exponent (default value=-0.229) | ^ Line 4 (4G10.0) ^^ |COH0| Initial value of cohesion | |COHF| Final value of cohesion | |BCOH| Only if there is hardening/softening | |TRACTION| | ^ Line 5 (3G10.0) ^^ |POROS| Initial soil porosity ($n_0$)| |RHO| Specific mass| |DIV| Parameter for the computation of NINTV in the law (for NINTV=0 only).| === Hardening forms === __ITYLA = 2__: Volumetric strain hardening \\ $dp_0$ = ECRO $p_0\varepsilon_v^p$\\ Sign depedent on the consolidation stress.\\ Softening is possible === Elastic forms === __IELA = 0__: Linear elasticity \\ E_PAR1 = E : Young’s Elastic modulus \\ E_PAR2 = ANU : Poisson’s ratio \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = ECRO : Hardening parameter\\ __IELA = 1__: Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = ANU : Poisson’s ratio \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 2__: Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = G0 : Shear modulus \\ E_PAR3 = not used \\ E_PAR4 = not used \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 3__: Non Linear elasticity \\ E_PAR1 = KAPPA : Elastic slope in oedometer path \\ E_PAR2 = K0 : Minimum value of the bulk modulus \\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = ALPHA2 : \\ HARD = LAMBDA : Plastic slope in oedometer path \\ $ECRO=\frac{1+e_0}{\lambda - \kappa}$\\ __IELA = 4__: Non Linear elasticity \\ E_PAR1 = K0 : Minimum value of the bulk modulus \\ E_PAR2 = n : n parameter\\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = Patm : Atmospheric pressure\\ HARD \\ ECRO=HARD __IELA = 5__: Non Linear elasticity \\ E_PAR1 = $\nu$ : Poisson’s ratio \\ E_PAR2 = n : n parameter\\ E_PAR3 = G0 : Shear modulus \\ E_PAR4 = Patm : Atmospheric pressure\\ HARD \\ ECRO=HARD === IPCONS parameter === __IPCONS = 0:__ $p_0 = PCONS0$\\ __IPCONS = 1:__ $p_0 = \sigma_v . OCR$\\ __IPCONS = 0:__ $p_0 = p_0(\sigma,\text{cohesion}, \phi) . OCR$\\ Where $p_0(\sigma,\text{cohesion},\phi) = \left[ \frac{-II_{\widehat{\sigma}}^2}{m^2(I_{\sigma}-\frac{3c}{tg\phi})} - I_{\sigma} \right] / 3$ ===== Stresses ===== ==== Number of stresses ==== = 6 : for 3D state\\ = 4 : for the other cases. \\ ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the other cases : |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== = 34 : for 2D plane strain analysis with bifurcation criterion (ICBIF=1)\\ = 22 : in all the other cases ==== List of state variables ==== |Q(1)| = 1 in plane strain state | |:::| circumferential strain rate ($\dot{\varepsilon_{\theta}}$) in axisymmetrical state| |Q(2)| actualised specific mass | |Q(3)| = 0 if the current state is elastic | |:::|= 1 if the current state is elasto-plastic: PLASOL | |:::|= 2 if the current state is elasto-plastic: ELLIPSE | |:::|= 3 if the current state is elasto-plastic: TRACTION | |:::|= 4 if the current state is elasto-plastic: ELL + PLASOL | |:::|= 5 if the current state is elasto-plastic: PLASOL + TRACTION | |Q(4)| plastic work per unit volume ($W^p$) | |Q(5)| Actualised value of porosity | |Q(6)| equivalent strain $n^o$1 $\varepsilon_{eq1} = \int \Delta \dot{\varepsilon}_{eq}\Delta t$ | |Q(7)| Updated value of preconsolidation pressure $p_0$ | |Q(8)| equivalent strain indicator $n^o 1$ (Villote $n^o 1$) $\alpha_1 = (\Delta\dot{\varepsilon}_{eq}\Delta t ) / \varepsilon_{eq1}$ | |Q(9)| X deformation | |Q(10)| Y deformation | |Q(11)| Z deformation | |Q(12)| XY deformation | |Q(13)| Plastic volumetric strain | |Q(14)| Plastic equivalent strain | |Q(15)| Cohesion | |Q(16)| Frictional angle in compression | |Q(17)| Frictional angle in extension | |Q(18)| APEX | |Q(19)| number of sub-intervals used for the integration | |Q(20)| Cubic modulus | |Q(21)| Shear modulus | |Q(22)$\rightarrow$ Q(34)| reserved for bifurcation |