====== ENDC ====== ===== Description ===== Endochronic (internal time) model coupled with damage for elasto-plastic cyclic loading analysis in plane state at constant temperature. ==== The model ==== This law is used for mechanical analysis of 2-D continuum element undergone large deformation by using endochronic (internal time) theory coupled with damage model for elasto-plastic cyclic loading. ==== Files ==== Prepro: LENDC.F \\ Lagamine: ENDC2D.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 85| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (2I5) ^^ |NINTV| Number of sub-steps used to integrate numerically the constitutive equation in a time step | |NPOINT| The function form | |:::| = 1 : Linear expansion (for 2-terms kernal function) | |:::| = 2 : Saturated expansion (for 2-terms kernal function) | |:::| \[\rho(\zeta)=\rho_0+\rho_1(\zeta)\]\[\rho_1(\zeta)=\frac{E_1}{E}\;e^{-\alpha_1.\zeta}+\frac{E_2}{E}\] | |:::| = 3 : Linear expansion (for 3-terms kernal function) | |:::| = 4 : Saturated expansion (for 3-terms kernal function) | |:::| \[\rho(\zeta)=\rho_0+\rho_1(\zeta)\]\[\rho_1(\zeta)=\frac{E_1}{E}\;e^{-\alpha_1.\zeta}+\frac{E_2}{E}+\frac{E_3}{E}\;e^{-\alpha_3.\zeta}\] | ==== Real parameters ==== ^ Line 1 (7G10.0) ^^ |E| YOUNG's elastic modulus | |$\nu$| POISSON's ratio | |$\sigma_o$| Initial yield limit | |$\sigma_f$| Yield limit at finite strain | |$E_{to}$| Initial tangent modulus | |$E_{tf}$| Tangent modulus at finite strain | |:::| Thickness = 1.0 (by default) | |$\varepsilon_f$| Equivalent plastic strain at the unloading point | ^ Line 2 (7G10.0) ^^ |$2\sigma_y$| Stress drop during the elastic unloading | |:::| = 2$\sigma_0$ at initial yielding point | |$A_o$| Ratio of saturated and initial stress | |:::| Only for the choice of saturated expansion form, meaning NPOINT = 2 or 4) | |$\sigma_{po}$| Yield limit for three-terms kernal function | |$E_{tpo}$| Yield limit for three-terms kernal function | |Dam| Parameter of damage model | |Edam| Parameter of damage model | |Rdam| Parameter of damage model \[D(\zeta)=Dam\;e^{-Edam\;.\;\zeta\;.\;Rdam}\]| ===== Stresses ===== ==== Number of stresses ==== 4 for plane state ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 21 ==== List of state variables ==== |Q(1)| = 1 : Plane strain | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |Q(2)| Current yield limit in tension | |Q(3)| = 0 : Current stress state is elastic | |:::| = 1 : Current stress state is plastic | |Q(4)| = 0 : Loading occurs | |:::| = 1 : Neutral loading occurs | |Q(5)| Equivalent plastic strain ($\bar{\varepsilon}^p$) | |Q(6)| Internal time $\zeta$ | |Q(7)| Current kernal function's value $f_n$ | |Q(8)| Current derived kernal function's value $df_n$ | |Q(9)$\rightarrow$Q(20)| Current back stresses | |Q(21)| Current damage coefficient | {{ :laws:endc1.png?600 |}} {{ :laws:endc2.png?600 |}} {{:laws:endc3.png?300|}} {{ :laws:endc4.png?300|}}