Table of Contents

ELA

Description

Elastic constitutive law for solid elements at constant temperature

The model

This law is used for a mechanical analysis of elastic isotropic solids undergoing large strains.

Files

Prepro: LELA.F

Lagamine:

Availability

Plane stress state YES
Plane strain state YES
Axisymmetric state YES
3D state YES
Generalized plane state YES

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 1
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (2I5)
ISOL = 0 : use of total stresses in the constitutive law
≠ 0 : use of effective stresses in the constitutive law - see appendix 7
NINTV = 1 by default

Real parameters

Line 1 (3G10.0)
E YOUNG’s elastic modulus
ANU POISSON’s ratio
RHO Specific mass

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

7

List of state variables

Q(1)Element thickness (t) in plane stress state
= 1 in plane strain state
Circumferential strain rate ($\varepsilon_{r}$) in axisymmetric state
= 0 in 3-D state
element thickness (t) in generalized plane state
Q(2) nothing
Q(3) nothing
Q(4) nothing
Q(5) nothing
Q(6)strain energy per unit volume
Q(7)actualized specific mass RHO