Table of Contents

DAFA2

Description

Full law name : EVP-DAFALIAS-KALIAKIN

DAFALIAS-KALIAKIN elasto-visco-plastic constitutive law for isotropic cohesive soils.

The model

This law is used for mechanical analysis of elasto-visco-plastic isotropic porous media undergoing large strains according to DAFALIAS-KALIAKIN “bounding surface model”.

Use ISTRA(3) = -1 in the loading file.

Files

Prepro: LDAFA.F
Lagamine: INT2DA.F

Availability

Plane stress state NO
Plane strain state YES
Axisymmetric state YES
3D state NO
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 89
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (4I5)
NINTV Number of sub steps used to integrate numerically the constitutive equation in a time step
ISOL = 0 : Use of total stresses in the constitutive law
$\neq$ 0 : Use of effective stresses in the constitutive law (See annex 8) 
ICBIF = 0 : Nothing
= 1 : Compute the bifurcation criterion
ISTRAIN = 0 : Use of “CAUCHY” strains
= 1 : Use of natural strains

Real parameters

Line 1 (7G10.0)
$\lambda$ Slope of the consolidation line in a plot of $e$ vs. $\ln(p)$
$\kappa$ Slope of the swell/recompression line in a plot of $e$ vs. $\ln(p)$
$\phi_c$ Frictional angle in triaxial compression path
$\phi_e$ Frictional angle in triaxial extension path
G Elastic shear modulus (if $\nu > 0$, G is useless in the simulation)
$\gamma$ Without signification for the moment (= 0)
$I_l$ Non-zero limiting value of $I$ and $I_0$ below which the relation between $I$ (or $I_0$) and void ratio changes continuously from logarithmic to linear (usually $I_l$ = $P_a$)
Line 2 (7G10.0)
$P_a$ Atmospheric pressure
$R_c$ Parameter defining the shape of the bounding surface for ellipse 1 (corresponding to a state of triaxial compression, it may assume any value in the range $1.0\leq R\leq\infty$. Typical values : 2.00-3.00)
$A_c$ Parameter defining the shape of the hyperbolic portion of the bounding surface (corresponding to a state of triaxial compression. In theory, $0$\leq$A_c<\infty$, experimentally : 0.02-0.2)
t Parameter defining the shape of the ellipse 2 portion of the bounding surface ($0.05\leq t\leq 0.95$)
$R_e/R_c$ Ratio of the values of the shape parameter associated with ellipse 1 in extension ($R_e$) and in compression ($R_c$)
$A_e/A_c$ Ratio of the values of the shape parameter associated with hyperbola in extension ($A_e$) and in compression ($A_c$)
c Projection center parameter ($0.0\leq c < 1.0$)
Line 3 (7G10.0)
$S_p$ Parameter controlling the size of elastic nucleus associated with plastic strains
$H_c$ Primary hardening parameter $H$ in a state of triaxial compression (typical values: 5-50)
m Secondary hardening parameters which applies to both extension and compression (m=0.02 is recommended)
$H_e/H_c$ Ratio of the values of the primary hardening parameter $H$ in extension ($H_e$) and in compression ($H_c$)
s Hardening parameter used only for the single ellipse version of the bounding surface (not available now)
w Hardening parameter used only for the single ellipse version of the bounding surface (not available now)
$S_v$ Parameter controlling the size of elastic nucleus associated with visco-plastic response
< 0 : The effect of viscosity will not be considered
Line 4 (7G10.0)
V Visco-plastic parameter (typical values : $10^7-10^8$ kPa-min)
n Visco-plastic parameter (typical values : 0.7-10)
$e_{in}$ Initial void ratio
$\nu$ Poisson's ratio (if $\nu$ < 0, G is specified explicitly)
$p_c$ Initial size of the bounding surface ($p_c$ is the effective pre-consolidation pressure)
OCR Over consolidation ratio (if OCR = 0 : we give $p_c$)
RHO Specific mass

Stresses

Number of stresses

6 for 3D state
4 for the other cases

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

For the 3-D state:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{zz}$
SIG(4)$\sigma_{xy}$
SIG(5)$\sigma_{xz}$
SIG(6)$\sigma_{yz}$

For the other cases:

SIG(1)$\sigma_{xx}$
SIG(2)$\sigma_{yy}$
SIG(3)$\sigma_{xy}$
SIG(4)$\sigma_{zz}$

State variables

Number of state variables

22 (11 for axisymmetric state)

List of state variables

Q(1) Element thickness (t) in plane stress state
= 1 : Plane strain state
Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state
= 0 : 3D state
Element thickness (t) in generalized plane state
Q(2) e : Void ratio
Q(3) $I_0$ : Intersection of the bounding surface with the positive $I$-axis
Q(4) $\varepsilon_{kk}$ : Accumulated volumetric strain
Q(5) $I$ : First invariant of the effective stress (corresponding to the current state)
Q(6) J : Square root of the second deviatoric stress invariant (corresponding to the current state)
Q(7) An index to projection zone
= 1 : Indicates that the “image” state is on the ellipse 1
= 2 : Indicates that the “image” state is on the hyperbola
= 3 : Indicates that the “image” state is on the ellipse 2
Q(8) $\sin(3\alpha)$ where $\alpha$ is the “Lode” angle
Q(9) b : Projection parameter (b$\geq$1, if b=1 the current state is on the bounding surface)
Q(10) Sum of $\dot{\varepsilon}_V \;dt$
Q(11) Actualised specific mass
Q(12)$\rightarrow$Q(23) Modulus for the analysis of bifurcation