====== DAFA2 ====== ===== Description ===== Full law name : EVP-DAFALIAS-KALIAKIN \\ DAFALIAS-KALIAKIN elasto-visco-plastic constitutive law for isotropic cohesive soils. ==== The model ==== This law is used for mechanical analysis of elasto-visco-plastic isotropic porous media undergoing large strains according to DAFALIAS-KALIAKIN "bounding surface model".\\ Use ISTRA(3) = -1 in the loading file. ==== Files ==== Prepro: LDAFA.F \\ Lagamine: INT2DA.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES| |Axisymmetric state| YES| |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 89| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (4I5) ^^ |NINTV| Number of sub steps used to integrate numerically the constitutive equation in a time step | |ISOL| = 0 : Use of total stresses in the constitutive law | |:::| $\neq$ 0 : Use of effective stresses in the constitutive law (See annex 8) | |ICBIF| = 0 : Nothing | |:::| = 1 : Compute the bifurcation criterion | |ISTRAIN| = 0 : Use of "CAUCHY" strains | |:::| = 1 : Use of natural strains | ==== Real parameters ==== ^ Line 1 (7G10.0) ^^ |$\lambda$| Slope of the consolidation line in a plot of $e$ vs. $\ln(p)$ | |$\kappa$| Slope of the swell/recompression line in a plot of $e$ vs. $\ln(p)$ | |$\phi_c$| Frictional angle in triaxial compression path | |$\phi_e$| Frictional angle in triaxial extension path | |G| Elastic shear modulus (if $\nu > 0$, G is useless in the simulation) | |$\gamma$| Without signification for the moment (= 0) | |$I_l$| Non-zero limiting value of $I$ and $I_0$ below which the relation between $I$ (or $I_0$) and void ratio changes continuously from logarithmic to linear (usually $I_l$ = $P_a$) | ^ Line 2 (7G10.0) ^^ |$P_a$| Atmospheric pressure | |$R_c$| Parameter defining the shape of the bounding surface for ellipse 1 (corresponding to a state of triaxial compression, it may assume any value in the range $1.0\leq R\leq\infty$. Typical values : 2.00-3.00) | |$A_c$| Parameter defining the shape of the hyperbolic portion of the bounding surface (corresponding to a state of triaxial compression. In theory, $0$\leq$A_c<\infty$, experimentally : 0.02-0.2) | |t| Parameter defining the shape of the ellipse 2 portion of the bounding surface ($0.05\leq t\leq 0.95$) | |$R_e/R_c$| Ratio of the values of the shape parameter associated with ellipse 1 in extension ($R_e$) and in compression ($R_c$) | |$A_e/A_c$| Ratio of the values of the shape parameter associated with hyperbola in extension ($A_e$) and in compression ($A_c$) | |c| Projection center parameter ($0.0\leq c < 1.0$) | ^ Line 3 (7G10.0) ^^ |$S_p$| Parameter controlling the size of elastic nucleus associated with plastic strains | |$H_c$| Primary hardening parameter $H$ in a state of triaxial compression (typical values: 5-50) | |m| Secondary hardening parameters which applies to both extension and compression (m=0.02 is recommended) | |$H_e/H_c$| Ratio of the values of the primary hardening parameter $H$ in extension ($H_e$) and in compression ($H_c$) | |s| Hardening parameter used only for the single ellipse version of the bounding surface (not available now) | |w| Hardening parameter used only for the single ellipse version of the bounding surface (not available now) | |$S_v$| Parameter controlling the size of elastic nucleus associated with visco-plastic response | |:::| < 0 : The effect of viscosity will not be considered | ^ Line 4 (7G10.0) ^^ |V| Visco-plastic parameter (typical values : $10^7-10^8$ kPa-min) | |n| Visco-plastic parameter (typical values : 0.7-10) | |$e_{in}$| Initial void ratio | |$\nu$| Poisson's ratio (if $\nu$ < 0, G is specified explicitly) | |$p_c$| Initial size of the bounding surface ($p_c$ is the effective pre-consolidation pressure) | |OCR| Over consolidation ratio (if OCR = 0 : we give $p_c$) | |RHO| Specific mass | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{zz}$| |SIG(4)|$\sigma_{xy}$| |SIG(5)|$\sigma_{xz}$| |SIG(6)|$\sigma_{yz}$| For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 22 (11 for axisymmetric state) ==== List of state variables ==== |Q(1)| Element thickness (t) in plane stress state | |:::| = 1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetrical state | |:::| = 0 : 3D state | |:::| Element thickness (t) in generalized plane state | |Q(2)| e : Void ratio | |Q(3)| $I_0$ : Intersection of the bounding surface with the positive $I$-axis | |Q(4)| $\varepsilon_{kk}$ : Accumulated volumetric strain | |Q(5)| $I$ : First invariant of the effective stress (corresponding to the current state) | |Q(6)| J : Square root of the second deviatoric stress invariant (corresponding to the current state) | |Q(7)| An index to projection zone | |:::| = 1 : Indicates that the "image" state is on the ellipse 1 | |:::| = 2 : Indicates that the "image" state is on the hyperbola | |:::| = 3 : Indicates that the "image" state is on the ellipse 2 | |Q(8)| $\sin(3\alpha)$ where $\alpha$ is the "Lode" angle | |Q(9)| b : Projection parameter (b$\geq$1, if b=1 the current state is on the bounding surface) | |Q(10)| Sum of $\dot{\varepsilon}_V \;dt$ | |Q(11)| Actualised specific mass | |Q(12)$\rightarrow$Q(23)| Modulus for the analysis of bifurcation | {{ :laws:dafa2.png?600 |}}