User Tools

Site Tools


laws:chab

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
laws:chab [2022/09/15 11:49]
helene [Integer parameters]
laws:chab [2022/09/28 16:23] (current)
helene
Line 148: Line 148:
 |$k_4$|Safety coefficient applied to stress level on creep damage| |$k_4$|Safety coefficient applied to stress level on creep damage|
 ^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^ ^If IARRH=1 - Line 3+i (i=1:nAF) (2G10)*i^^
-|$A_i$| coefficient for expression of bi using Arrhenius equation| +|$A_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/​T)$
-|$B_i$| coefficient for expression of bi using Arrhenius equation|+|$B_i$| coefficient for expression of $b_i$ using Arrhenius equation: $b_i=A_i \exp(-B_i/​T)$|
  
 === Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 === === Temperature-dependent parameters - Case where iarrh=0 or iarrh=1 ===
Line 207: Line 207:
 |$B_\alpha$|Dilatation coefficient parameter| |$B_\alpha$|Dilatation coefficient parameter|
 |$C_\alpha$|Dilatation coefficient parameter. \\ If $C_\alpha=0$,​ $\int_0^T\alpha(T).dT$ is computed as: $\int_0^T\alpha(T).dT=A_{\alpha}T^2+B_{\alpha}T$| |$C_\alpha$|Dilatation coefficient parameter. \\ If $C_\alpha=0$,​ $\int_0^T\alpha(T).dT$ is computed as: $\int_0^T\alpha(T).dT=A_{\alpha}T^2+B_{\alpha}T$|
-|A<​sub>​σY</​sub>​|Yield stress parameter| +|$A_{\sigma_y}$|Yield stress parameter| 
-|B<​sub>​σY</​sub>​|Yield stress parameter| +|$B_{\sigma_y}$|Yield stress parameter| 
-|C<​sub>​σY</​sub>​|Yield stress parameter|+|$C_{\sigma_y}$|Yield stress parameter|
 ^Line 3 (6G10)^^ ^Line 3 (6G10)^^
-|A<​sub>​K</​sub>​|Drag stress parameter| +|$A_K$|Drag stress parameter| 
-|B<​sub>​K</​sub>​|Drag stress parameter| +|$B_K$|Drag stress parameter| 
-|C<​sub>​K</​sub>​|Drag stress parameter| +|$C_K$|Drag stress parameter| 
-|A<​sub>​n</​sub>​|Norton coefficient parameter| +|$A_n$|Norton coefficient parameter| 
-|B<​sub>​n</​sub>​|Norton coefficient parameter| +|$B_n$|Norton coefficient parameter| 
-|C<​sub>​n</​sub>​|Norton coefficient parameter|+|$C_n$|Norton coefficient parameter|
 ^Line 4 (2G10)^^ ^Line 4 (2G10)^^
-|b| Rate of isotropic hardening| +|$b$| Rate of isotropic hardening| 
-|Q| Total isotropic saturation size of the yield surface|+|$Q$| Total isotropic saturation size of the yield surface|
 ^Line 5 (6G10)^^ ^Line 5 (6G10)^^
 |B<​sub>​Ci</​sub>​|Parameter for Ci ∀i| |B<​sub>​Ci</​sub>​|Parameter for Ci ∀i|
Line 269: Line 269:
 |**Line 7+NAF+2NAFcyc+nAFY (4G10)**|| |**Line 7+NAF+2NAFcyc+nAFY (4G10)**||
 |The creep damage parameter $S_c$ is calculated using a simpler exponential law: \[A_{S_c}\exp\left(\frac{T}{B_{S_c}}\right)\]|| |The creep damage parameter $S_c$ is calculated using a simpler exponential law: \[A_{S_c}\exp\left(\frac{T}{B_{S_c}}\right)\]||
-|A<​sub>​Sc</​sub>​| creep damage parameter| +|$A_{S_c}$| creep damage parameter| 
-|B<​sub>​Sc</​sub>​| creep damage parameter| +|$B_{S_c}$| creep damage parameter| 
-|exp<​sub>​Sc</​sub>​|exponent parameter for creep damage| +|$s_c$|exponent parameter for creep damage| 
-|k|Kachanov creep damage exponent|+|$k$|Kachanov creep damage exponent|
 ^If IDAM≥10 ^^ ^If IDAM≥10 ^^
 |**Line 1+NAF+2NAFcyc+nAFY+H(IDAM)*7 (3G10 to 7G10)**|| |**Line 1+NAF+2NAFcyc+nAFY+H(IDAM)*7 (3G10 to 7G10)**||
-|A<​sub>​ku</​sub>​| corrosion damage parameter| +|$A_{k_u}$| corrosion damage parameter| 
-|B<​sub>​ku</​sub>​| corrosion damage parameter| +|$B_{k_u}$| corrosion damage parameter| 
-|C<​sub>​ku</​sub>​| corrosion damage parameter|+|$C_{k_u}$| corrosion damage parameter|
 |$L_E$| [Optional] Characteristic length of the element - if blank or 0, $L_E$ is computed as the cubic root of the volume element| |$L_E$| [Optional] Characteristic length of the element - if blank or 0, $L_E$ is computed as the cubic root of the volume element|
 |$A_{m_u}$| [ONLY IF DIDAM=3] power law parameter| |$A_{m_u}$| [ONLY IF DIDAM=3] power law parameter|
Line 297: Line 297:
 ===== State variables ===== ===== State variables =====
 ==== Number of state variables ==== ==== Number of state variables ====
-24+6*nAF+6*nAFY+H(UIDAM)*(2+2*ddim+6)+DIDAM+8*ILCF ​\\ +$24+6n_{AF}+6n_{AF_Y}+(8+2ddim)\mathscr{H}(u_{i_{dam}})+2\mathscr{H}(d_{i_{dam}})+8i_{LCF}$ 
-Where: ​UIDAM=IDAM ​mod 10 and DIDAM=IDAM-UIDAM \\ +\\ 
-H() is the Heaviside step function.+Where: ​$u_{i_{dam}}\equiv i_{dam} \mod 10$ \\ and $d_{i_{dam}}=i_{dam}-u_{i_{dam}}$. ​\\ 
 +$\mathscr{H}(x)is the Heaviside step function: $\mathscr{H}(x)=1$ if and only if $x>0$, otherwise, $\mathscr{H}(x)=0$.
 ==== List of state variables ==== ==== List of state variables ====
 |Q(1)|plastic strain norm $p$| |Q(1)|plastic strain norm $p$|
Line 312: Line 313:
 |Q(18+6nAF+6i:​23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY| |Q(18+6nAF+6i:​23+6nAF+6i)|Modification tensor $\underline{Y}_i$ (6 components) for i=1:nAFY|
 |Q(24+6nAF+6nAFY)|Maximum temperature in the loading history| |Q(24+6nAF+6nAFY)|Maximum temperature in the loading history|
-===Only if 10>IDAM>0=== +===Only if $u_{i_{dam}}>0$=== 
-In the following table, ddim=1 for isotropic damage (scalar damage variable D) and ddim=6 for anisotropic damage (not implemented).+In the following table, ddim=1 for isotropic damage (scalar damage variable ​$D$) and ddim=6 for anisotropic damage (not implemented).
 |Q(25+6NAF+6NAFY)| Stored energy $w_s$| |Q(25+6NAF+6NAFY)| Stored energy $w_s$|
 |Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$| |Q(26+6NAF+6NAFY)| Visco-plastic multiplicator with damage $r$|
-| Q(27+6NAF+6NAFY) \\ Q(26+ddim+6nAF+6nAFY)|Fatigue damage variable $D_f$ (isotropic) or tensor $\underline{D}_f$ (anisotropic)| +| Q(27+6NAF+6NAFY) \\ Q(26+ddim+6nAF+6nAFY)|Fatigue damage variable $D_f$ (isotropic) or tensor $\underline{D}_f$ (anisotropic ​- not implemented)| 
-| Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic)|+| Q(27+ddim+6NAF+6NAFY) \\ Q(26+2ddim+6nAF+6nAFY)|Creep damage variable $D_c$ (isotropic) or tensor $\underline{D}_c$ (anisotropic ​- not implemented)|
 | Q(27+2ddim+6NAF+6NAFY) \\  … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$| | Q(27+2ddim+6NAF+6NAFY) \\  … \\ Q(32+2ddim+6nAF+6nAFY)|Delayed stress tensor $\sigma^d$|
-===Only if IDAM≥10=== +===Only if $i_{dam}$≥10=== 
-NQDU=25+6nAF+6nAFY+(8+2ddim)<IDAM>+$N_{Q,D_u}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})$ 
 +\\ with $\mathscr{H}(u_{i_{dam}})=1$ if and only if $u_{i_{dam}}>0$
 | Q(NQDU)| $D_u$ - Uniform corrosion damage| | Q(NQDU)| $D_u$ - Uniform corrosion damage|
 | Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)| | Q(NQDU+1)| $L_E=\sqrt[3]{V_E}$ - Characteristic length of the element where $V_E$ is the volume of the element (:!: only works with BWD3T elements)|
-=== Only if ILCF>0 === +=== Only if $i_{LCF}>0=== 
-NQLCF=25+6nAF+6nAFY+(8+2ddim)<​IDAM>​+2DIDAM ​(where ​DIDAM=1 if IDAM≥10 and 0 otherwise)+$N_{Q,LCF}=25+6n_{AF}+6n_{AF_Y}+(8+2ddim)*\mathscr{H}(u_{i_{dam}})+2d_{i_{dam}}$ \\ where $d_{i_{dam}}=1if $i_{dam}$≥10 and 0 otherwise)
 | Q(NQLCF)| t (time)| | Q(NQLCF)| t (time)|
 |Q(1+NQLCF) |N (cycle)| |Q(1+NQLCF) |N (cycle)|
laws/chab.1663235389.txt.gz · Last modified: 2022/09/15 11:49 by helene