Table of Contents

CAZACUW

Description

3D constitutive law with an orthotropic yield criterion for hexagonal closed packed materials

The model

Mechanical analysis of elasto-plastic HCP materials undergoing large strains.

Files

Prepro: LCAZACW.F
Lagamine: CAZACUW.F

Availability

Plane stress state NO
Plane strain state NO
Axisymmetric state NO
3D state YES
Generalized plane state NO

Input file

Parameters defining the type of constitutive law

Line 1 (2I5, 60A1)
ILLaw number
ITYPE 524
COMMENT Any comment (up to 60 characters) that will be reproduced on the output listing

Integer parameters

Line 1 (3I5)
NWP Number of plastic work levels
NTRAN Number of linear transformations
MAXITMaximal number of iterations during stress integration

Real parameters

Line 1 (6G10.0)
$E_{1}$YOUNG's orthotropic elastic moduli
$E_{2}$
$E_{3}$
$\mbox{ANU}_{12}$Orthotropic POISSON's ratios
$\mbox{ANU}_{13}$
$\mbox{ANU}_{23}$
Line 2 (3G10.0)
$G_{12}$ COULOMB's orthotropic elastic moduli
$G_{13}$
$G_{23}$
Line 3 (G10.0)
Adegree of homogeneity ,param(16, ilaw)

The inverse of the orthotropic elastic matrix is defined:

\[\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}\]

FOR I = 1, NWP

Line 1 (G10.0)
WP plastic work level, param(17+(I-1)*(10*NTRAN + 1),ilaw)

FOR J = 1, NTRAN

Line 1 (G10.0)
ASYM differential effect, param(18+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
Line 2 (3G10.0) anisotropy coefficients
C11 param(19+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C12 param(20+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C13param(21+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
Line 3 (3G10.0) anisotropy coefficients
C22param(22+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C23 param(23+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C33param(24+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
Line 4 (3G10.0) anisotropy coefficients
C44 param(25+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C55 param(26+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)
C66 param(27+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)

The yiel locus is defined: \[F=\Big[ \overset{NTRAN}{\underset{I=1}{\Sigma}}\overset{3}{\underset{J=1}{\Sigma}} \big(|\Sigma_{J}^{(I)}| - k^{(I)}\Sigma_{J}^{(I)}\big)^a \Big] ^{\frac{1}{a}} - \sigma_{F} = 0 \] Where:

Line 1 (3G10.0) hardening parameters (Voce)
R0initial yield stress (see hardening form), param(17+(10*NTRAN+1)*NWP,ilaw)
RSATsaturation value (see hardening form) param(18+(10*NTRAN+1)*NWP,ilaw)
CRsaturation rate (see hardening form)), param(19+(10*NTRAN+1)*NWP,ilaw)

Stresses

Number of stresses

6

Meaning

The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.

SIG(1)$\sigma_{XX}$
SIG(2)$\sigma_{YY}$
SIG(3)$\sigma_{ZZ}$
SIG(4)$\sigma_{XY}$
SIG(5)$\sigma_{XZ}$
SIG(6)$\sigma_{YZ}$

State variables

Number of state variables

9

List of state variables

Q(1) Yield criterion
= 0 : the previous step was elastic
= 1: the previous step was elasto-plastic
Q(2) Accumulated equivalent plastic strain
Q(3) Accumulated plastic work
Q(4)Pointer for PARAM vector
Q(5)Triaxiality
Q(6)Equivalent stress

Hardening form

$\sigma_{F} = R_{0} + R_{SAT}(1-exp(-C_{R}\overline{\varepsilon}^{p}))$

**Important remark**

It is required to use BWD3D elements and to work with local axes (for more details, see explanations of BLZ3D element).