====== CAZACUW ====== ===== Description ===== 3D constitutive law with an orthotropic yield criterion for hexagonal closed packed materials ==== The model ==== Mechanical analysis of elasto-plastic HCP materials undergoing large strains. ==== Files ==== Prepro: LCAZACW.F \\ Lagamine: CAZACUW.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO| |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 524| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |NWP| Number of plastic work levels| |NTRAN| Number of linear transformations| |MAXIT|Maximal number of iterations during stress integration| ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |$E_{1}$|YOUNG's orthotropic elastic moduli| |$E_{2}$|:::| |$E_{3}$|:::| |$\mbox{ANU}_{12}$|Orthotropic POISSON's ratios| |$\mbox{ANU}_{13}$|:::| |$\mbox{ANU}_{23}$|:::| ^Line 2 (3G10.0)^^ |$G_{12}$| COULOMB's orthotropic elastic moduli| |$G_{13}$|:::| |$G_{23}$|:::| ^Line 3 (G10.0)^^ |A|degree of homogeneity ,//param(16, ilaw) //| The inverse of the orthotropic elastic matrix is defined: \[\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}\] **FOR I = 1, NWP**\\ ^Line 1 (G10.0)^^ |WP| plastic work level, //param(17+(I-1)*(10*NTRAN + 1),ilaw)//| **FOR J = 1, NTRAN** ^Line 1 (G10.0)^^ |ASYM| differential effect, //param(18+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw) //| ^Line 2 (3G10.0) anisotropy coefficients^^ |C11| //param(19+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C12|// param(20+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C13|//param(21+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| ^Line 3 (3G10.0) anisotropy coefficients^^ |C22|//param(22+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C23|// param(23+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C33|//param(24+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| ^Line 4 (3G10.0) anisotropy coefficients^^ |C44|// param(25+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C55|// param(26+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| |C66|// param(27+(I-1)*(10*NTRAN + 1) + (J-1)*10,ilaw)//| The yiel locus is defined: \[F=\Big[ \overset{NTRAN}{\underset{I=1}{\Sigma}}\overset{3}{\underset{J=1}{\Sigma}} \big(|\Sigma_{J}^{(I)}| - k^{(I)}\Sigma_{J}^{(I)}\big)^a \Big] ^{\frac{1}{a}} - \sigma_{F} = 0 \] Where: * $\Sigma_{J}^{(I)}$ is the Jth eigenvalue of $\underline{\Sigma}^{(I)}$ defined by the following relationship: \[\underline{\Sigma}^{(I)} = \underline{\underline{C}}^{(I)}:\underline{S}\] which represents the Ith linear transformation of the deviator __S__ of the Cauchy stress tensor. The tensor $\underline{\underline{C}}^{(I)}$ is defined: \[\underline{\underline{C}}^{(I)} = \begin{pmatrix} C_{11}^{I} & C_{12}^{I} & C_{13}^{I} & 0&0&0 \\ C_{12}^{I} & C_{22}^{I} &C_{23}^{I}&0&0&0 \\ C_{13}^{I}&C_{23}^{I}&C_{33}^{I}&0&0&0 \\ 0&0&0&C_{44}^{I}&0&0 \\ 0&0&0&0&C_{55}^{I}&0 \\ 0&0&0&0&0&C_{66}^{I} \\ \end{pmatrix}\] * $k^{l}$ is linked to the differential effect (tension/compression asymmetry) * $a$ is the degree of homogeneity ^Line 1 (3G10.0) hardening parameters (Voce) ^^ |R0|initial yield stress (see [[laws:cazacuw#Hardening form|hardening form]]), //param(17+(10*NTRAN+1)*NWP,ilaw)//| |RSAT|saturation value (see [[laws:cazacuw#Hardening form|hardening form]])// param(18+(10*NTRAN+1)*NWP,ilaw)//| |CR|saturation rate (see [[laws:cazacuw#Hardening form|hardening form]])), //param(19+(10*NTRAN+1)*NWP,ilaw)//| ===== Stresses ===== ==== Number of stresses ==== 6 ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| |SIG(5)|$\sigma_{XZ}$| |SIG(6)|$\sigma_{YZ}$| ===== State variables ===== ==== Number of state variables ==== 9 ==== List of state variables ==== |Q(1)| Yield criterion \\ = 0 : the previous step was elastic \\ = 1: the previous step was elasto-plastic| |Q(2)| Accumulated equivalent plastic strain| |Q(3)| Accumulated plastic work| |Q(4)|Pointer for PARAM vector| |Q(5)|Triaxiality| |Q(6)|Equivalent stress| ==== Hardening form ==== $\sigma_{F} = R_{0} + R_{SAT}(1-exp(-C_{R}\overline{\varepsilon}^{p}))$ ====**Important remark**==== It is required to use [[elements:blz3d|BWD3D]] elements and to work with local axes (for more details, see explanations of [[elements:blz3d|BLZ3D]] element).