3D constitutive law with an orthotropic yield criterion for hexagonal closed packed materials
Mechanical analysis of elasto-plastic HCP materials undergoing large strains.
Prepro: LCAZAC2.F
Lagamine : CAZACU2.F
Plane stress state | NO |
Plane strain state | NO |
Axisymmetric state | NO |
3D state | YES |
Generalized plane state | NO |
Line 1 (2I5, 60A1) | |
---|---|
IL | Law number |
ITYPE | 521 |
COMMENT | Any comment (up to 60 characters) that will be reproduced on the output listing |
Line 1 (3I5) | |
---|---|
NTRAN | Number of linear transformations |
MAXIT | maximal number of iterations during stress integration |
Line 1 (6G10.0) | |
---|---|
$E_{1}$ | YOUNG's orthotropic elastic moduli |
$E_{2}$ | |
$E_{3}$ | |
$\mbox{ANU}_{12}$ | Orthotropic POISSON's ratios |
$\mbox{ANU}_{13}$ | |
$\mbox{ANU}_{23}$ | |
Line 2 (3G10.0) | |
$G_{12}$ | COULOMB's orthotropic elastic moduli |
$G_{13}$ | |
$G_{23}$ | |
Line 3 (G10.0) | |
A | degree of homogeneity = param(16, ilaw) |
The inverse of the orthotropic elastic matrix is defined:
$$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22}\\ \varepsilon_{33}\\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}$$
FOR I = 1, NTRAN
Line 1 (G10.0) | |
---|---|
ASYM | differential effect, param(17+(I-1)*10,ilaw) |
Line 2 (3G10.0) material parameters (anisotropy) | |
C11 | param(18+(I-1)*10,ilaw) |
C12 | param(19+(I-1)*10,ilaw) |
C13 | param(20+(I-1)*10,ilaw) |
Line 3 (3G10.0) material parameters (anisotropy) | |
C22 | param(21+(I-1)*10,ilaw) |
C23 | param(22+(I-1)*10,ilaw) |
C33 | param(23+(I-1)*10,ilaw) |
Line 4 (3G10.0) material parameters (anisotropy) | |
C44 | param(24+(I-1)*10,ilaw) |
C55 | param(25+(I-1)*10,ilaw) |
C66 | param(26+(I-1)*10,ilaw) |
Yielding is described by:
\[f(\mathbf{\sigma}-\mathbf{X}, \overline{\varepsilon}_{p}) = \overline{\sigma}(\mathbf{\sigma}-\mathbf{X}, \overline{\varepsilon}_{p})-Y(\overline{\varepsilon}_{p})\]
Where $\overline{\sigma}$ is the effective stress while $\overline{\varepsilon}_{p}$ is the effective plastic strain associated to $\overline{\sigma}$ using the work-equivalence principle. The kinematic hardening is introduced by the back-stress tensor $\mathbf{X}$ and $Y$ denotes the yield stress whose evolution describes the size of the yield surface (isotropic hardening).
The effective stress $\overline{\sigma}$ is of the form:
\[\overline{\sigma} = B \big( \overset{NTRAN}{\underset{i=1}{\Sigma}}\big[ \big( |\Sigma_{1}^{(i)}| - k^{(i)}\Sigma_{1}^{(i)}\big)^{a} + \big( |\Sigma_{2}^{(i)}| - k^{(i)}\Sigma_{2}^{(i)}\big)^{a}+ \big( |\Sigma_{3}^{(i)}| - k^{(i)}\Sigma_{3}^{(i)}\big)^{a} \big] \big) ^{\frac{1}{a}}\]
Where:
$\Sigma_{1}^{(i)}, \Sigma_{2}^{(i)}, \Sigma_{3}^{(i)}$ are the eigenvalue of the tensor $\mathbf{\Sigma}^{(i)}$ defined as:
$$\mathbf{\Sigma}^{(i)} = \mathbf{C}^{(i)} : (\mathbf{s- X^{'}})$$
i.e. the i-th linear transformation of $\mathbf{s – X^{'}}$ where s and $\mathbf{X^{'}}$ are the deviator of the Cauchy stress tensor and the back-stress tensor, respectively. Each tensor $\mathbf{C}^{(i)}$ is represented in Voigt notations as follows:
\[ \mathbf{C}^{(i)} = \begin{pmatrix} C_{11}^{i} & C_{12}^{i} & C_{13}^{i} & 0&0&0\\ C_{12}^{i} & C_{22}^{i} &C_{23}^{i}&0&0&0\\ C_{13}^{i}&C_{23}^{i}&C_{33}^{i}&0&0&0\\ 0&0&0&C_{44}^{i}&0&0\\ 0&0&0&0&C_{55}^{i}&0\\ 0&0&0&0&0&C_{66}^{i}\\ \end{pmatrix}\]
\[B = \Big[ \overset{NTRAN}{\underset{i=1}{\Sigma}}\big[ \big( |\Phi_{1}^{(i)}| - k^{(i)}\Phi_{1}^{(i)}\big)^{a} + \big( |\Phi_{2}^{(i)}| - k^{(i)}\Phi_{2}^{(i)}\big)^{a}+ \big( |\Phi_{3}^{(i)}| - k^{(i)}\Phi_{3}^{(i)}\big)^{a} \big] \Big] ^{\frac{-1}{a}}\]
With
$$\Phi_{1}^{(i)} = \frac{2}{3}C_{11}^{(i)}-\frac{1}{3}C_{12}^{(i)}-\frac{1}{3}C_{13}^{(i)}$$
$$\Phi_{2}^{(i)} = \frac{2}{3}C_{12}^{(i)}-\frac{1}{3}C_{22}^{(i)}-\frac{1}{3}C_{23}^{(i)}$$
$$\Phi_{3}^{(i)} = \frac{2}{3}C_{13}^{(i)}-\frac{1}{3}C_{23}^{(i)}-\frac{1}{3}C_{33}^{(i)}$$
Line 1 (3G10.0) (see section hardening form) | |
---|---|
R0 | initial yield stress , param(17+NTRAN*10,ilaw) |
SR | isotropic hardening saturation value, param(18+NTRAN*10,ilaw) |
CR | isotropic hardening saturation rate, param(19+NTRAN*10,ilaw) |
Line 2 (2G10.0) (see section hardening form) | |
SX | kinematic hardening saturation value, param(20+NTRAN*10,ilaw) |
CX | kinematic hardening saturation rate, param(21+NTRAN*10,ilaw) |
6
The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates.
SIG(1) | $\sigma_{XX}$ |
SIG(2) | $\sigma_{YY}$ |
SIG(3) | $\sigma_{ZZ}$ |
SIG(4) | $\sigma_{XY}$ |
SIG(5) | $\sigma_{XZ}$ |
SIG(6) | $\sigma_{YZ}$ |
9
Q(1) | Yield criterion = 0 → the previous step was elastic = 1 → the previous step was elasto-plastic |
Q(2) | Accumulated equivalent plastic strain |
Q(3) $\rightarrow$ Q(8) | Back stress |
Q(9) | Triaxiality |
Isotropic hardening (Voce):
\[Y(\overline{\varepsilon}_{p}) = R_{0} + R \\
dR = c_{R}(s_{R}-R)d\overline{\varepsilon}_{p}\]
Kinematic hardening (Armstrong-Frederick):
\[d\mathbf{X} = c_{X}(s_{X}d\mathbf{\varepsilon}_{p}-\textbf{X}d\overline{\varepsilon}_{p})\]