====== CAZACU ====== ===== Description ===== 3D constitutive law with an orthotropic yield criterion for hexagonal closed packed materials ==== The model ==== Mechanical analysis of elasto-plastic HCP materials undergoing large strains. ==== Files ==== Prepro: LCAZAC2.F \\ Lagamine : CAZACU2.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| NO| |Axisymmetric state| NO | |3D state| YES | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 521| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (3I5) ^^ |NTRAN| Number of linear transformations| |MAXIT|maximal number of iterations during stress integration| ==== Real parameters ==== ^ Line 1 (6G10.0) ^^ |$E_{1}$|YOUNG's orthotropic elastic moduli| |$E_{2}$|:::| |$E_{3}$|:::| |$\mbox{ANU}_{12}$|Orthotropic POISSON's ratios| |$\mbox{ANU}_{13}$|:::| |$\mbox{ANU}_{23}$|:::| ^Line 2 (3G10.0)^^ |$G_{12}$| COULOMB's orthotropic elastic moduli| |$G_{13}$| :::| |$G_{23}$| :::| ^Line 3 (G10.0)^^ |A|degree of homogeneity //= param(16, ilaw)//| The inverse of the orthotropic elastic matrix is defined: $$\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22}\\ \varepsilon_{33}\\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{pmatrix} = \begin{pmatrix} \frac{1}{E_{1}} & \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{13}}{E_{1}} & 0 & 0 & 0\\ \frac{-\nu_{12}}{E_{1}} & \frac{-\nu_{12}}{E_{2}} & \frac{1}{E_{2}} & 0 & 0 & 0\\ \frac{-\nu_{13}}{E_{1}} & \frac{-\nu_{23}}{E_{2}} & \frac{1}{E_{3}} & 0 & 0 & 0\\ 0 & 0 & 0 & \frac{1}{2G_{12}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2G_{13}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2G_{23}} \end{pmatrix} \begin{pmatrix} \sigma_{11}\\ \sigma_{22}\\ \sigma_{33}\\ \sigma_{12}\\ \sigma_{13}\\ \sigma_{23}\\ \end{pmatrix}$$ **FOR I = 1, NTRAN** ^Line 1 (G10.0)^^ |ASYM| differential effect, //param(17+(I-1)*10,ilaw) //| ^Line 2 (3G10.0) material parameters (anisotropy)^^ |C11| //param(18+(I-1)*10,ilaw)//| |C12|// param(19+(I-1)*10,ilaw)//| |C13|//param(20+(I-1)*10,ilaw)//| ^Line 3 (3G10.0) material parameters (anisotropy)^^ |C22|//param(21+(I-1)*10,ilaw)//| |C23|// param(22+(I-1)*10,ilaw)//| |C33|//param(23+(I-1)*10,ilaw)//| ^Line 4 (3G10.0) material parameters (anisotropy)^^ |C44|// param(24+(I-1)*10,ilaw)//| |C55|// param(25+(I-1)*10,ilaw)//| |C66|// param(26+(I-1)*10,ilaw)//| Yielding is described by: \[f(\mathbf{\sigma}-\mathbf{X}, \overline{\varepsilon}_{p}) = \overline{\sigma}(\mathbf{\sigma}-\mathbf{X}, \overline{\varepsilon}_{p})-Y(\overline{\varepsilon}_{p})\] Where $\overline{\sigma}$ is the effective stress while $\overline{\varepsilon}_{p}$ is the effective plastic strain associated to $\overline{\sigma}$ using the work-equivalence principle. The kinematic hardening is introduced by the back-stress tensor $\mathbf{X}$ and $Y$ denotes the yield stress whose evolution describes the size of the yield surface (isotropic hardening). \\ The effective stress $\overline{\sigma}$ is of the form: \[\overline{\sigma} = B \big( \overset{NTRAN}{\underset{i=1}{\Sigma}}\big[ \big( |\Sigma_{1}^{(i)}| - k^{(i)}\Sigma_{1}^{(i)}\big)^{a} + \big( |\Sigma_{2}^{(i)}| - k^{(i)}\Sigma_{2}^{(i)}\big)^{a}+ \big( |\Sigma_{3}^{(i)}| - k^{(i)}\Sigma_{3}^{(i)}\big)^{a} \big] \big) ^{\frac{1}{a}}\] Where:\\ $\Sigma_{1}^{(i)}, \Sigma_{2}^{(i)}, \Sigma_{3}^{(i)}$ are the eigenvalue of the tensor $\mathbf{\Sigma}^{(i)}$ defined as:\\ $$\mathbf{\Sigma}^{(i)} = \mathbf{C}^{(i)} : (\mathbf{s- X^{'}})$$ i.e. the i-th linear transformation of $\mathbf{s – X^{'}}$ where **s** and $\mathbf{X^{'}}$ are the deviator of the Cauchy stress tensor and the back-stress tensor, respectively. Each tensor $\mathbf{C}^{(i)}$ is represented in Voigt notations as follows:\\ \[ \mathbf{C}^{(i)} = \begin{pmatrix} C_{11}^{i} & C_{12}^{i} & C_{13}^{i} & 0&0&0\\ C_{12}^{i} & C_{22}^{i} &C_{23}^{i}&0&0&0\\ C_{13}^{i}&C_{23}^{i}&C_{33}^{i}&0&0&0\\ 0&0&0&C_{44}^{i}&0&0\\ 0&0&0&0&C_{55}^{i}&0\\ 0&0&0&0&0&C_{66}^{i}\\ \end{pmatrix}\] * the parameters $k^{i}$ allow for the description of strength differential effects;\\ * $a$ is the degree of homogeneity;\\ * $B$ is a constant defined such that $\overline{\sigma}$ reduces to the tensile yield stress in RD, i.e.:\\ \[B = \Big[ \overset{NTRAN}{\underset{i=1}{\Sigma}}\big[ \big( |\Phi_{1}^{(i)}| - k^{(i)}\Phi_{1}^{(i)}\big)^{a} + \big( |\Phi_{2}^{(i)}| - k^{(i)}\Phi_{2}^{(i)}\big)^{a}+ \big( |\Phi_{3}^{(i)}| - k^{(i)}\Phi_{3}^{(i)}\big)^{a} \big] \Big] ^{\frac{-1}{a}}\] With \\ $$\Phi_{1}^{(i)} = \frac{2}{3}C_{11}^{(i)}-\frac{1}{3}C_{12}^{(i)}-\frac{1}{3}C_{13}^{(i)}$$ $$\Phi_{2}^{(i)} = \frac{2}{3}C_{12}^{(i)}-\frac{1}{3}C_{22}^{(i)}-\frac{1}{3}C_{23}^{(i)}$$ $$\Phi_{3}^{(i)} = \frac{2}{3}C_{13}^{(i)}-\frac{1}{3}C_{23}^{(i)}-\frac{1}{3}C_{33}^{(i)}$$ ^Line 1 (3G10.0) (see section [[laws:cazacu#Hardening form|hardening form]]) ^^ |R0|initial yield stress , // param(17+NTRAN*10,ilaw) //| |SR|isotropic hardening saturation value, //param(18+NTRAN*10,ilaw) //| |CR|isotropic hardening saturation rate, // param(19+NTRAN*10,ilaw)//| ^Line 2 (2G10.0) (see section [[laws:cazacu#Hardening form|hardening form]]) ^^ |SX|kinematic hardening saturation value, // param(20+NTRAN*10,ilaw)//| |CX|kinematic hardening saturation rate, //param(21+NTRAN*10,ilaw)//| ===== Stresses ===== ==== Number of stresses ==== 6 ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| |SIG(5)|$\sigma_{XZ}$| |SIG(6)|$\sigma_{YZ}$| ===== State variables ===== ==== Number of state variables ==== 9 ==== List of state variables ==== |Q(1)| Yield criterion \\ = 0 → the previous step was elastic \\ = 1 → the previous step was elasto-plastic| |Q(2)| Accumulated equivalent plastic strain| |Q(3) $\rightarrow$ Q(8)|Back stress| |Q(9)|Triaxiality| ==== Hardening form ==== Isotropic hardening (Voce):\\ \[Y(\overline{\varepsilon}_{p}) = R_{0} + R \\ dR = c_{R}(s_{R}-R)d\overline{\varepsilon}_{p}\] Kinematic hardening (Armstrong-Frederick):\\ \[d\mathbf{X} = c_{X}(s_{X}d\mathbf{\varepsilon}_{p}-\textbf{X}d\overline{\varepsilon}_{p})\] ====Important remark==== It is required to use [[elements:blz3d|BWD3D]] elements and to work with local axes (for more details, see explanations of [[elements:blz3d|BLZ3D]] element).