====== BODATH ====== ===== Description ===== Bodner elastic-visco-plastic constitutive damage law with thermal effects for solid elements at variable temperature. ==== The model ==== Coupled thermo-mechanical analysis with damage of elastic-visco-plastic solids undergoing large strains. ==== Files ==== Prepro: LBODAT.F \\ Lagamine: BODC2E.F, BODC2A.F, BODC3D.F ===== Availability ===== |Plane stress state|NO | |Plane strain state| YES| |Axisymmetric state| YES | |3D state| YES| |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 246| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing.| ==== Integer parameters ==== ^ Line 1 (9I5) ^^ |NTEMP|number of temperatures at which material data are given| |NINTV| number of sub-steps used to integrate numerically the constitutive equation in a time step| |IFRAC|usefulness actually| |ISDOT|>0\\ <0| ==== Real parameters independent of the temperature ==== ^Line 1 (7G10.0)^^ |E|YOUNG's elastic modulus| |ANU|POISSON's ratio| |D0|assumed limiting plastic-shear strain rate| |D1|maximum of directional hardness| |RK1|maximum of istropic hardness| |RM1|hardening exponent of isotropic hardness| |RM2|hardening exponent of directional hardness| ^Line 2 (4G10.0)^^ |R1|recovery exponent of isotropic hardness| |R2| recovery exponent of directional hardness| |ALPHA| thermal expansion coefficient ($\alpha$)| |COEF|TAYLOR QUINNEY's coefficient| ====Real parameters dependent of the temperature ==== Repeat NTEMP times ^Line 1 (6G10.0)^^ |TEMPE| temperature| |RKO|initial isotropic hardness ($K_o$) at temperature T| |RK2|minimum or stable isotropic hardness ($K_o$) at temperature T| |A1|recovery coefficient of isotropic hardness at temperature T| |A2|recovery coefficient of directional hardness at temperature T| |RN|strain rate sensitivity coefficient (n) at temperature T| ==== Real parameters related to the damage model==== ^Line 1 (7G10.0)^^ |A|coefficient of stress function in the damage model (A)| |S|exponent of stress function in the damage model (S)| |THOLD|stress threshold for damage onset| |R|exponent of equivalent plastic strain rate| |TAUCO|ratio of deviatoric to volumetric damage| |BETA|constant in the triaxial stress function| |DSMAX|failure value of deviatoric damage| ===== Stresses ===== ==== Number of stresses ==== 6 for the 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the 3-D state: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{ZZ}$| |SIG(4)|$\sigma_{XY}$| |SIG(5)|$\sigma_{XZ}$| |SIG(6)|$\sigma_{YZ}$| For the other cases: |SIG(1)|$\sigma_{XX}$| |SIG(2)|$\sigma_{YY}$| |SIG(3)|$\sigma_{XY}$| |SIG(4)|$\sigma_{ZZ}$| ===== State variables ===== ==== Number of state variables ==== 25 for the 3D state\\ 23 for the other cases ==== List of state variables ==== |Q(1)| = element thickness (t) in plane stress state \\ = 1 in plane strain state \\ = circumferential strain rate $\dot{\varepsilon_\theta}$ in axisymmetric state \\ = 0 in 3D state \\ = element thickness (t) in generalized plane state | |Q(2)| current equivalent stress in tension | |Q(3)| current isotropic hardness, its initial value is KO| |Q(4)| equivalent directional hardness | |Q(5)-Q(N)| components of directional hardness (N = 10 for 3D state and N = 8 for other cases)| |Q(N+1)| equivalent strain| |Q(N+2)| deviatoric damage| |Q(N+3)| volumetric damage| |Q(N+4)|PUISB| |Q(N+5)| PUISB*DELTAT (its final value is calculated in THNL2 or THNL3)| |Q(N+6)| RHO * C (calculated in THNL2 or THNL3)| |Q(N+7)-Q(N+12)| fracture criteria (not programmed)| |Q(N+13)| NINTV| |Q(N+14)| deviatoric damage rate| |Q(N+15)| 0 if d < DSMAX\\ 1 if d > or = DSMAX|