====== BBM ====== Barcelona Basic Model ===== Description ===== Full law name : ALONSO-GENS BBM \\ An elasto-plastic constitutive law for saturated or partially saturated soils based on the CAMCLAY-type model.\\ It can take into account: * the influence of the LODE angle; * linear or non-linear elasticity; * non-associated plasticity; * the elasto-plasticity induced by the suction. ==== The model ==== This law is used for mechanical analysis of saturated and partially saturated elasto-plastic isotropic porous media undergoing suction changes. === Hardening forms === __Elasticity__ |IELAP| Expression | Parameters | |0| \[\kappa=\kappa_0\] | $\kappa_0$ = KAPPA0 | |1| \[\kappa = \kappa_0\left[1+\alpha_1.s+\alpha_2.\ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]\] | $\kappa_0$ = KAPPA0 \\ $\alpha_1$ = KAPPA1 \\ $\alpha_2$ = KAPPA2 | |IELAS| Expression | Parameters | |0| \[\kappa_s=\kappa_{s0}\] | $\kappa_{s0}$ = KAPPAS0 | |1| \[\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)\] | $\kappa_{s0}$ = KAPPAS0 \\ $\alpha_p$ = KAPPAS1 \\ $\alpha_s$ = KAPPAS2 \\ $u_{atm}$ = PATM | |2| Not defined || |3| \[\kappa_s = \kappa_{s0}.(1-\alpha_s.s)\] | $\kappa_{s0}$ = KAPPAS0 \\ $\alpha_s$ = KAPPAS2 | |4| \[\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)\] | $\kappa_{s0}$ = KAPPAS0 \\ $\alpha_p$ = KAPPAS1 | |5| \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } s>s^* \\ \kappa_{res} & \quad \text{if } s\leq s^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 \\ $\kappa_{res}$ = KAPPAS1 \\ $s^*$ = KAPPAS2 | |6| \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}& \quad \text{if } S_r>S_r^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 \\ $\gamma_{\kappa_s}$ = KAPPAS1 \\ $S_r^*$ = KAPPAS2 | |7| \[\kappa_s = \begin{cases} \kappa_{s0} & \quad \text{if } S_r\leq S_r^* \\ \kappa_{res} & \quad \text{if } S_r>S_r^*\end{cases}\] | $\kappa_{s0}$ = KAPPAS0 \\ $\kappa_{res}$ = KAPPAS1 \\ $S_r^*$ = KAPPAS2 | __Yield surfaces__ {{ :laws:bbm.png?400 |}} ==== Files ==== Prepro: LBBM.F \\ Lagamine: BBMPIL.F ===== Availability ===== |Plane stress state| NO | |Plane strain state| YES | |Axisymmetric state| YES | |3D state| NO | |Generalized plane state| NO | ===== Input file ===== ==== Parameters defining the type of constitutive law ==== ^ Line 1 (2I5, 60A1)^^ |IL|Law number| |ITYPE| 812| |COMMENT| Any comment (up to 60 characters) that will be reproduced on the output listing| ==== Integer parameters ==== ^ Line 1 (16I5) ^^ |NINTV| > 0 : Number of sub-steps used to integrate numerically the constitutive equation in a time step | |:::| = 0 : NINTV will be calculated in the law with DIV | |ISOL| = 0 : Use of total stresses $\sigma_{t,ij}$ in the constitutive law | |:::| = 6 : Use of net stresses $\sigma_{ij}$ in the constitutive law. The net stresses are defined as \[\sigma_{ij}=\sigma_{t,ij}-\max(u_a,u_w)\;\delta_{ij}\] with $u_a$ and $u_w$ the air and water pressures and $\delta_{ij}$ the Kronecker delta | |IELA\\ (used in BBMELA)| = 0 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=\frac{3}{2}.\frac{1-2\nu}{1+\nu}.K\] | |:::| = 1 : Non-linear elasticity \[K = \frac{1+e}{\kappa}.p\quad\text{and}\quad G=G_0\] | |IELAP\\ (used in BBMELA)| = 0 : Constant KAPPA ($\kappa$) | |:::| > 0 : Variable KAPPA ($\kappa$) | |:::| = 1 : $\kappa = \kappa_0\left[1+\alpha_1. s + \alpha_2. \ln\left(\frac{s+u_{atm}}{u_{atm}}\right)\right]$ | |IELAS\\ (used in BBMINT)| = 0 : Constant KAPPAS ($\kappa_s$) | |:::| > 0 : Variable KAPPAS ($\kappa_s$) | |:::| = 1 : $\kappa_s = \kappa_{s0}\left[1+\alpha_p.\ln\left(\frac{p}{u_{atm}}\right)\right].\exp(\alpha_s.s)$ | |:::| = 2 : Not defined | |:::| = 3 : $\kappa_s = \kappa_{s0}.(1-\alpha_s.s)$ | |:::| = 4 : $\kappa_s = \kappa_{s0}.\exp(-\alpha_p.p)$ | |:::| = 5 : if $s\leq s^*$ : $\kappa_s = \kappa_{res}$, else : $\kappa_s=\kappa_{s0}$ | |:::| = 6 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{s0}(1-S_r)^{\gamma_{\kappa_s}}$, else : $\kappa_s=\kappa_{s0}$ | |:::| = 7 : if $S_r>S_r^*$ : $\kappa_s=\kappa_{res}$, else : $\kappa_s=\kappa_{s0}$ | |IVOID| = 0 : Initial void ratio | |:::| = 1 : Updated void ratio | |ILC| Shape of the LC curve in the $p-s$ plane | |:::| = 0 : Original formulation (Alonso et al., 1990) | |:::| = 1 : Modified version for $S_r^*$ (Dieudonné, 2016) | |IDEV| Shape of the LC curve in the $p–q$ plane | |:::| = 0 : Original formulation (Alonso et al., 1990) | |ICS| Increase in cohesion with suction | |:::| = 0 : Original formulation (Alonso et al., 1990) | |IASSOC| = 0 : Non-associated plasticity (Alonso et al., 1990) | |:::| = 1 : Associated plasticity | |ILODEF| Shape of the yield surface in the deviatoric plane | |:::| = 0 : Circle in the deviatoric plane | |:::| = 1 : Smoothed irregular hexagon in the deviatoric plane | |ILODEG| Shape of the flow surface in the deviatoric plane (meaningful if IASSOC$\neq$1) | |:::| = 0 : Circle in the deviatoric plane | |:::| = 1 : Smoothed irregular hexagon in the deviatoric plane | ==== Real parameters ==== ^ Line 1 (3G10) ^^ |POROS0| Initial porosity | |RHO| Solid specific mass | |DIV| Parameter for the computation of NINTV in the law (for NINTV=0 only) | ^ Line 2 (5G10) ^^ |KAPPA0| 1st elastic parameter (relative to changes in stress) | |KAPPA1| 2nd elastic parameter (relative to changes in stress) | |KAPPA2| 3rd elastic parameter (relative to changes in stress) | |NUG| Poisson’s ratio $\nu$ (if IELA = 0) | |:::| Shear modulus G (if IELA = 1) | |AI1MIN| Minimum value of $I_{\sigma}$ for non-linear elasticity | ^ Line 3 (6G10) ^^ |COH| Value of cohesion in saturated conditions | |COH_PAR1| 1st parameter for the evolution of cohesion with suction | |COH_PAR2| 2nd parameter for the evolution of cohesion with suction | |PHIC| Friction angle (in degrees) for compressive paths | |PHIE| Friction angle (in degrees) for extensive paths (only if ILODEF=2) | |AN| Van Eekelen exponent (default value = -0.229) | ^ Line 4 (6G10) ^^ |LAMBDA0| Plastic coefficient in saturated conditions | |P0ST| Pre-consolidation pressure in saturated conditions | |PCrel| Relative reference pressure P0ST/PC for the definition of the LC curve | |LC_PAR1| 1st parameter of the LC curve | |LC_PAR2| 2nd parameter of the LC curve | |LC_PAR3| 3rd parameter of the LC curve | ^ Line 5 (6G10) ^^ |KAPPAS0| 1st elastic parameter (relative to changes in suction) | |KAPPAS1| 2nd elastic parameter (relative to changes in suction) | |KAPPAS2| 3rd elastic parameter (relative to changes in suction) | |LAMBDAS| Plastic suction coefficient | |PATM| Atmospheric pressure | |S0| Yield limit in term of suction (SI curve) | ===== Stresses ===== ==== Number of stresses ==== 6 for 3D state \\ 4 for the other cases ==== Meaning ==== The stresses are the components of CAUCHY stress tensor in global (X,Y,Z) coordinates. \\ For the other cases: |SIG(1)|$\sigma_{xx}$| |SIG(2)|$\sigma_{yy}$| |SIG(3)|$\sigma_{xy}$| |SIG(4)|$\sigma_{zz}$| ===== State variables ===== ==== Number of state variables ==== 25 in all the other cases ==== List of state variables ==== |Q(1)| = 1 : Plane strain state | |:::| Circumferential strain rate ($\dot{\varepsilon}_{\theta}$) in axisymmetric state | |Q(2)| Specific mass | |Q(3)| Porosity | |Q(4)| Suction | |Q(5)| = 0 if the current state is elastic | |:::| = 1 if the current state is elasto-plastic (LC) | |:::| = 2 if the current state is elasto-plastic (SI) | |:::| = 12 if the current state is elasto-plastic (LC + SI) | |Q(6)| Pre-consolidation pressure $p_0$ in saturated conditions | |Q(7)| Current pre-consolidation pressure $p_0$ | |Q(8)| Maximum suction $s_0$ | |Q(9)| Apparent cohesion | |Q(10)| Apparent resistance in extension | |Q(11)| Elastic slope relative to changes in pressure ($\kappa$) | |Q(12)| Cubic modulus (K) | |Q(13)| Shear modulus (G) | |Q(14)| Elastic slope relative to changes in pressure ($\kappa_s$) | |Q(15)| Plastic slope relative to changes in pressure ($\lambda(s)$) | |Q(16)| X deformation | |Q(17)| Y deformation | |Q(18)| Z deformation | |Q(19)| XY deformation | |Q(20)| Volumetric strain | |Q(21)| Deviatoric strain | |Q(22)| Number of sub-intervals used for the integration | |Q(23)| Number of iteration used for the integration | |Q(24)| Equivalent strain indicator $\alpha = \Delta\dot{\varepsilon}_{vol}\;\Delta t/\varepsilon_{vol}$ | |Q(25)| = 0 if elastic, 1 if softening, 2 if hardening |