This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
laws:arbth [2019/06/11 11:24] helene created |
laws:arbth [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 15: | Line 15: | ||
|ARB3C.F| ARB3C |Main subroutine of the law for 3D state| | |ARB3C.F| ARB3C |Main subroutine of the law for 3D state| | ||
|CALMAT.F| CALAMAT | Linear interpolation of parameters at a given temperature| | |CALMAT.F| CALAMAT | Linear interpolation of parameters at a given temperature| | ||
- | |CALDER.F| CALDER | Computation of $\frac{dE}{dT}$ and $\frac{d\alpha}{dT}$| | + | |CALDER.F| CALDER | Computation of $\frac{dE}{dT}$, $\frac{d\nu}{dT}$, and $\frac{d\alpha}{dT}$| |
|CALSYT.F| CALSYT | Computes actualized plastic limit | | |CALSYT.F| CALSYT | Computes actualized plastic limit | | ||
|CONCAT.F| CONCAT | Concatenation of 2 vectors | | |CONCAT.F| CONCAT | Concatenation of 2 vectors | | ||
Line 37: | Line 37: | ||
^ 1 line (6I5) ^^ | ^ 1 line (6I5) ^^ | ||
|NTEMP| number of temperatures at which material data are given | | |NTEMP| number of temperatures at which material data are given | | ||
- | |NINTV| number of sub-steps used to integrate numerically theconstitutive equation in a time step \\ if NINTV <= 0 : number of sub-steps is based on the norm of the deformation increment and on DIV=1.D-04 | | + | |NINTV| number of sub-steps used to integrate numerically the constitutive equation in a time step \\ if NINTV <= 0 : number of sub-steps is based on the norm of the deformation increment and on DIV=1.D-04 | |
|IENTH| = 0 to use the classical formulation for $\alpha$| | |IENTH| = 0 to use the classical formulation for $\alpha$| | ||
|:::| = 1 to use $\int \alpha dT$ | | |:::| = 1 to use $\int \alpha dT$ | | ||
Line 43: | Line 43: | ||
|:::|=0 if parabolic or bilinear law| | |:::|=0 if parabolic or bilinear law| | ||
|IZENER| =0 if $\sigma$-$\varepsilon$ curves do not depend on strain rate| | |IZENER| =0 if $\sigma$-$\varepsilon$ curves do not depend on strain rate| | ||
- | |:::| = 1 if $\sigma$-$\varepsilon$ curves depend on strain rate| | + | |:::| = 1 if $\sigma$-$\varepsilon$ curves depend on strain rate (Not available)| |
|IDYN|= 1 if recrystallisation| | |IDYN|= 1 if recrystallisation| | ||
|:::| = 0 else| | |:::| = 0 else| | ||
+ | ==== Real parameters ==== | ||
+ | ^ Line 1 (2G10.0) ^^ | ||
+ | |ACTIVE| energy activation (not used)| | ||
+ | |EPSRATE| epsilon rate (not used)| | ||
+ | //Note: This first line was implemented in the prepro but these parameters are not used in the law - probably a development that was never completed...// | ||
+ | === If NPOINT=0 - repeat NTEMP times=== | ||
+ | //Not available in ARBC2N ?// | ||
+ | ^ Line 1 (9G10.0) ^^ | ||
+ | |T| temperature| | ||
+ | |E| Young's elastic modulus at temperature T| | ||
+ | |Nu| Poisson's ratio at temperature T| | ||
+ | |ALPHA| Thermal expansion coefficient $\alpha$ at temperature T| | ||
+ | |SIGY1|Lower yield limit ($\sigma_{y1}$) at temperature T| | ||
+ | |SIGY2|Upper yield limit ($\sigma_{y2}$) at temperature T (SIGY2<SIGY1 bilinear case) \\ (parabolic case wrong very often AMH - better use bilinear case or npoint>0) | | ||
+ | |EPS2 | upper yield strain ($\varepsilon_2$) at temperature T| | ||
+ | |ET| Elasto-plastic tangent modulus (Et) at temperature T| | ||
+ | |COEFTQ| TAYLOR-QUINNEY's coefficient (q) at temperature T| | ||
- | ==== Real parameters ==== | + | === If NPOINT>0 === |
- | ^ Line 1 (FORMAT) ^^ | + | ^ Lines 1:NPOINT - (G10.0)^^ |
- | |PARAM1| description of PARAM1| | + | |EPS| Strain for which stress will be given at each temperature| |
+ | //Repeat NTEMP times// | ||
+ | ^Line 1 (3G10.0)^^ | ||
+ | |T| temperature| | ||
+ | |Nu| Poisson's ratio at temperature T| | ||
+ | |ALPHA| Thermal expansion coefficient $\alpha$ at temperature T| | ||
+ | ^Line 2:NPOINT+1^^ | ||
+ | |SIGY|Stress for strain defined here above at temperature T| | ||
+ | ^Line NPOINT+2^^ | ||
+ | |COEFTQ| TAYLOR-QUINNEY's coefficient (q) at temperature T| | ||
+ | === If IDYN=1 === | ||
+ | Recrystallisation function $\varepsilon = C_1 * atan((ln(Z)-C_2)*C_3)+C_4$ | ||
+ | ^Line 1 (4G10.0)^^ | ||
+ | |C1| for $\varepsilon_C$ | | ||
+ | |C2| :::| | ||
+ | |C3| :::| | ||
+ | |C4| :::| | ||
+ | ^Line 2 (4G10.0)^^ | ||
+ | |C1| for $\varepsilon_S$ | | ||
+ | |C2| :::| | ||
+ | |C3| :::| | ||
+ | |C4| :::| | ||
===== Stresses ===== | ===== Stresses ===== |