User Tools

Site Tools


lagamex:auto

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
lagamex:auto [2019/06/20 14:21]
helene [6th line - Automatic strategy and errors (7G10.0)]
lagamex:auto [2024/01/25 15:59] (current)
arthur
Line 5: Line 5:
 ===== 1st line (14I5) - Starting and saving files ===== ===== 1st line (14I5) - Starting and saving files =====
 ^Variable^Values^Description^ ^Variable^Values^Description^
-|NTIN<​sup>​5</​sup>​|=2,​3,​ or 16| File from which data are recovered at the beginning of the present execution| +|NTIN<​sup>​5</​sup>​|= 2,3, or 16| File from which data are recovered at the beginning of the present execution| 
-|NTOUT<​sup>​10</​sup>​|=2 or 3| File on which the results of the present execution will be saved (NTIN and \\ NTOUT can be the same file)| +|NTOUT<​sup>​10</​sup>​|= 2 or 3| File on which the results of the present execution will be saved (NTIN and \\ NTOUT can be the same file)| 
-|KNSYM<​sup>​15</​sup>​|=1|Matrice d'​itération non symétrique stockée en mémoire centrale (NSYSOL) - Méthode peu performante|+|KNSYM<​sup>​15</​sup>​|= 1|Matrice d'​itération non symétrique stockée en mémoire centrale (NSYSOL) - Méthode peu performante|
 |:::|= 2| Matrice symétrique,​ hauteur de colonne active stockée en mémoire centrale (COLSOL) - Méthode optimale pour les problèmes symétriques| |:::|= 2| Matrice symétrique,​ hauteur de colonne active stockée en mémoire centrale (COLSOL) - Méthode optimale pour les problèmes symétriques|
 |:::|= 3|Morse storage, METIS renumbering,​ Direct Solver LU symbolic and real factorization| |:::|= 3|Morse storage, METIS renumbering,​ Direct Solver LU symbolic and real factorization|
 |:::|= 4|Skyline storage, Direct solver LU| |:::|= 4|Skyline storage, Direct solver LU|
 |:::|= 5|Idem as method 3, with parallel real factorization (CAESAR library)| |:::|= 5|Idem as method 3, with parallel real factorization (CAESAR library)|
-|:::|= 6|GMRES method coupling with incomplete LU preconditionner,​ \\ Morse storage (see appendix 19)|+|:::|= 6|GMRES method coupling with incomplete LU preconditionner,​ \\ Morse storage (see [[appendices:​a19|appendix 19]])
 +|:::|= 8|Parallel solver SOLVE_DSS|
 |:::|= 9|Morse storage, PARDISO renumbering,​ Direct Solver LU symbolic and real factorization| |:::|= 9|Morse storage, PARDISO renumbering,​ Direct Solver LU symbolic and real factorization|
-|:::|= ±10|Iterative solver with mixed constraint preconditioner (GMRES or BiCGstab methods) → see appendix 22|+|:::|= ±10|Iterative solver with mixed constraint preconditioner (GMRES or BiCGstab methods) → see [[appendices:​a22|appendix 22]]|
 |IPRES<​sup>​20</​sup>​| = 0|if FMULT = DMULT = 0 : the strategy is based on time \\ If FMULT = 0 and DMULT ≠ 0 : the strategy is based on displacements \\ If FMULT ≠ 0 et DMULT = 0 : the strategy is based on forces \\ If FMULT ≠ 0 and DMULT ≠ 0 : impossible| |IPRES<​sup>​20</​sup>​| = 0|if FMULT = DMULT = 0 : the strategy is based on time \\ If FMULT = 0 and DMULT ≠ 0 : the strategy is based on displacements \\ If FMULT ≠ 0 et DMULT = 0 : the strategy is based on forces \\ If FMULT ≠ 0 and DMULT ≠ 0 : impossible|
 |:::|≠ 0|The strategy is based on time| |:::|≠ 0|The strategy is based on time|
-|:::|= 1, 3, 13, 18, 38|read imposed DOF on file 31 ({namdat}.dep) (see appendix 2) \\ Rem.: If you add 100 (e.g. 101 or 103), idem but with a special strategy adapted to large DEP files (computation time always smaller but does not work with the periodic loading or other special cases)| +|:::|= 1, 3, 13, 18, 38|read imposed DOF on file 31 ({namdat}.dep) (see [[appendices:​a2|appendix 2]]) \\ Rem.: If you add 100 (e.g. 101 or 103), idem but with a special strategy adapted to large DEP files (computation time always smaller but does not work with the periodic loading or other special cases)| 
-|:::|= 2, 3, 28, 38| read imposed forces on file 32 ({namdat}.loa) (see appendix 2)| +|:::|= 2, 3, 28, 38| read imposed forces on file 32 ({namdat}.loa) (see [[appendices:​a2|appendix 2]])| 
-|:::|= 8, 18, 28, 38| read force multiplier FMULT and displacement multiplier DMULT on file 33 ({namdat}.lic) (see appendix 3)| +|:::|= 8, 18, 28, 38| read force multiplier FMULT and displacement multiplier DMULT on file 33 ({namdat}.lic) (see [[appendices:​a3|appendix 3]])| 
-|:::|= 10, 11 or 13 |read imposed relations between the D.O.F. of generalized plane strain state on file 36 (see appendix 13).| +|:::|= 10, 11 or 13 |read imposed relations between the D.O.F. of generalized plane strain state on file 36 (see [[appendices:​a13|appendix 13]]).| 
-|:::|= 11, 12 or 13|read geometry of cylinders in generalized plane strain state on file 35 (see appendix 13)| +|:::|= 11, 12 or 13|read geometry of cylinders in generalized plane strain state on file 35 (see [[appendices:​a13|appendix 13]])| 
-|:::|= 19|read macroscopic strain (or vector L) for periodic limit boundary conditions. (see appendix 16) → file *.DEM (n°30)|+|:::|= 19|read macroscopic strain (or vector L) for periodic limit boundary conditions. (see [[appendices:​a16|appendix 16]]) → file *.DEM (n°30)|
 |IDENT<​sup>​25</​sup>​| = 0|No call of PRISUM and PRISIG and OCASFO routines| |IDENT<​sup>​25</​sup>​| = 0|No call of PRISUM and PRISIG and OCASFO routines|
 |:::|≠ 0 | Call of routines PRISUM and PRISIG (see [[lagamex:​auto#​Note|Note]]) + Lagamine inverse if IOPT≠0| |:::|≠ 0 | Call of routines PRISUM and PRISIG (see [[lagamex:​auto#​Note|Note]]) + Lagamine inverse if IOPT≠0|
Line 30: Line 31:
 |:::|= 2|Superposition of spectral bands| |:::|= 2|Superposition of spectral bands|
 |IARCL<​sup>​35</​sup>​|= 0|No effect| |IARCL<​sup>​35</​sup>​|= 0|No effect|
-|:::|= 1|Method with spherical step|+|:::|> 0|Method with spherical step (see [[lagamex:​autosph|spherical steps]])|
 |ICCOR<​sup>​40</​sup>​|= 0|Nothing| |ICCOR<​sup>​40</​sup>​|= 0|Nothing|
 |IOPT<​sup>​45</​sup>​|= 0|Normal analyze| |IOPT<​sup>​45</​sup>​|= 0|Normal analyze|
Line 36: Line 37:
 |IADREM<​sup>​50</​sup>​| = 0|Nothing| |IADREM<​sup>​50</​sup>​| = 0|Nothing|
 |:::|= 1|Adaptative remeshing| |:::|= 1|Adaptative remeshing|
-|NOWAR<​sup>​55</​sup>​| =0|Normal printing in ex.out| +|NOWAR<​sup>​55</​sup>​| = 0|Normal printing in ex.out| 
-|:::|=1|Do not print warning ( WARNING - ELEMB TERME DIAGONAL NO XXX NUL OU NEGATIF) in ex.out. This option is especially useful when using switch to reduce the size of ex.out| +|:::|= 1|Do not print warning ( WARNING - ELEMB TERME DIAGONAL NO XXX NUL OU NEGATIF) in ex.out. This option is especially useful when using switch to reduce the size of ex.out| 
-|IPCRED<​sup>​60</​sup>​| =???|Phi-C reduction method|+|IPCRED<​sup>​60</​sup>​| = ???|Phi-C reduction method|
  
 === Note === === Note ===
Line 67: Line 68:
 |MAXIT<​sup>​45</​sup>​|Maximum number of iterations per step. Default value : 5| |MAXIT<​sup>​45</​sup>​|Maximum number of iterations per step. Default value : 5|
 |NSWIT<​sup>​50</​sup>​|= 0 No switch| |NSWIT<​sup>​50</​sup>​|= 0 No switch|
-|:::|= 1 read switch data on NTSWI file (see appendix ​4bis)|+|:::|= 1 read switch data on NTSWI file (see [[appendices:​a4|appendix ​4]])|
 |NEXPT<​sup>​55</​sup>​|= 0 in dynamic analysis, implicit scheme| |NEXPT<​sup>​55</​sup>​|= 0 in dynamic analysis, implicit scheme|
 |:::|< 0 in dynamic analysis, explicit scheme| |:::|< 0 in dynamic analysis, explicit scheme|
 |:::|= n > 0 in dynamic analysis, mixed scheme; steps n, 2n, 3n are implicit, the others are explicit| |:::|= n > 0 in dynamic analysis, mixed scheme; steps n, 2n, 3n are implicit, the others are explicit|
 |NPRIT<​sup>​60</​sup>​|= 0 no particular printing of nodal values (on file .IPN), element integration points values (on file .IPE) or reactions values (on file .IPR)| |NPRIT<​sup>​60</​sup>​|= 0 no particular printing of nodal values (on file .IPN), element integration points values (on file .IPE) or reactions values (on file .IPR)|
-|:::|= 1 reading of the file .PRI, for printing concerning nodal values (on file .IPN), element integration points values (on file .IPE) or reactions values (on file .IPR) - see appendix 9|+|:::|= 1 reading of the file .PRI, for printing concerning nodal values (on file .IPN), element integration points values (on file .IPE) or reactions values (on file .IPR) - see [[appendices:​a9|appendix 9]]|
 |ILSAV<​sup>​65</​sup>​|= 0 nothing| |ILSAV<​sup>​65</​sup>​|= 0 nothing|
 |:::|= 1 change of ALSAV format to G15.0| |:::|= 1 change of ALSAV format to G15.0|
 +|:::|= 2 ALSAV defined cyclically (see [[lagamex:​auto#​Last lines|Last lines]])|
  
 === (1) Signification of JSTEP === === (1) Signification of JSTEP ===
Line 129: Line 131:
 |Cranck-Nicolson |θ = 1/2| β = 1/4 | |Cranck-Nicolson |θ = 1/2| β = 1/4 |
 |Implicit| θ = 1| β = 0 | |Implicit| θ = 1| β = 0 |
 +
 +The integration scheme is made of two parts : \\
 +- the first one (θ) is about the referencial time for the energy balance \\
 +- the second one (β) is about the referencial time for the material parameters\\
 +
 +which gives : 
 +\[ σ^{t+1} = [(1-θ-β) ALAMX + β ALBMX] ε^{t} + [β ALAMX + (θ-β) ALBMX] ε^{t+1} ​  \]
 +
 +Where ALAMX represent material properties at time t and ALBMX at t+1
 +
 +
 === For seepage pollutant flow transport with fixed mesh and Eulerian Lagrangian method (ICRIT=3): === === For seepage pollutant flow transport with fixed mesh and Eulerian Lagrangian method (ICRIT=3): ===
 STRAT(4)<​sup>​40</​sup>​ to STRAT(7)<​sup>​70</​sup>​ STRAT(4)<​sup>​40</​sup>​ to STRAT(7)<​sup>​70</​sup>​
  
 === For dynamic analysis === === For dynamic analysis ===
-Newmark parameters ​β and γ \\ +Newmark parameters ​$\beta$ ​and $\gamma$ (see [[appendices:​a10|Appendix 10]]) \\ 
-If β<0: $\beta=(1+\alpha)^2/​4$ and $\gamma=0.5+\alpha k$ (better compromise between stability, numerical damping and frequency distortion 0 ≤ α ≤ 1≤ ≤ 0.5) +If $\beta ​< 0$: $\beta=(1+\alpha)^2/​4$ and $\gamma=0.5+\alpha k$ (better compromise between stability, numerical damping and frequency distortion ​$\leq \alpha \leq 1$ and $\leq \leq 0.5$
-|STRAT(2)<​sup>​20</​sup>​|β or -α|| +|STRAT(2)<​sup>​20</​sup>​|if > 0 → $\beta$ \\ if < 0 → $\alpha$|| 
-|STRAT(3)<​sup>​30</​sup>​|γ or k||+|STRAT(3)<​sup>​30</​sup>​|if STRAT(2) > 0 → $\gamma$ \\ else $k$||
 |STRAT(4)<​sup>​40</​sup>​|Damping coefficent α| C = αM + βK \\ For dynamic implicit (or mixed) simulations,​ used in routines \\ DYJT3D for 8-nodes brick elements and DYCQJ4 for COQJ4| |STRAT(4)<​sup>​40</​sup>​|Damping coefficent α| C = αM + βK \\ For dynamic implicit (or mixed) simulations,​ used in routines \\ DYJT3D for 8-nodes brick elements and DYCQJ4 for COQJ4|
 |STRAT(4)<​sup>​40</​sup>​|Damping coefficent β|:::| |STRAT(4)<​sup>​40</​sup>​|Damping coefficent β|:::|
Line 161: Line 174:
 If these values are equal to zero, the convergence norms are __relative__,​ it is generally the case. \\ \\ If these values are equal to zero, the convergence norms are __relative__,​ it is generally the case. \\ \\
 If these values are negative, the convergence norms are generally relatives except if the reaction norm (dimension per dimension) is smaller than the value introduced hereafter. In this case, the norm becomes absolute for the considered dimension. It is then a limit value, a minimum of the reaction norms. \\ If these values are negative, the convergence norms are generally relatives except if the reaction norm (dimension per dimension) is smaller than the value introduced hereafter. In this case, the norm becomes absolute for the considered dimension. It is then a limit value, a minimum of the reaction norms. \\
-For a detailed explanation,​ see Appendix 15.+For a detailed explanation,​ see [[appendices:​a15|Appendix 15]].
  
 |STRAT(15)<​sup>​10</​sup>​|Mechanical force| |STRAT(15)<​sup>​10</​sup>​|Mechanical force|
Line 174: Line 187:
 ---- ----
 ===== 8th line (and 9th if required) - Printing control (15I5/14I5) ===== ===== 8th line (and 9th if required) - Printing control (15I5/14I5) =====
-Only the data structure is described hereafter. The proposed possibilities are detailed in appendix 1. The 9th line is only necessary if IOPT(I) equals to 2, 3 or 5.+Only the data structure is described hereafter. The proposed possibilities are detailed in [[appendices:​a1|appendix 1]]. The 9th line is only necessary if IOPT(I) equals to 2, 3 or 5.
 |IOPT(I) \\ I=1,15| Printing option| |IOPT(I) \\ I=1,15| Printing option|
 |LISTE(14) |Definition of the list of nodes or elements selected for printing, if required| |LISTE(14) |Definition of the list of nodes or elements selected for printing, if required|
Line 186: Line 199:
 |PRECU<​sup>​40</​sup>​|Precision for convergence on displacements increments| |PRECU<​sup>​40</​sup>​|Precision for convergence on displacements increments|
 |PRECF<​sup>​50</​sup>​|Precision for out-of-balance forces| |PRECF<​sup>​50</​sup>​|Precision for out-of-balance forces|
-|INITV<​sup>​55</​sup>​|Initialization of speeds at the beginning of the step \\ = 0 speeds of the preceding step \\ = 1 all the speeds are equal to zero at the beginning of the step until the time increment increases (classical method) \\ = 4 all the speeds are equal to zero at the beginning of the step (idem 1 but for ever) \\ = 5 all the speeds are equal to zero at the beginning of the first step|+|INITV<​sup>​55</​sup>​|Initialization of speeds at the beginning of the step (see [[appendices:​a10|Appendix 10]] for dynamic case) \\ = 0 speeds of the preceding step \\ = 1 all the speeds are equal to zero at the beginning of the step until the time increment increases (classical method) \\ = 4 all the speeds are equal to zero at the beginning of the step (idem 1 but for ever) \\ = 5 all the speeds are equal to zero at the beginning of the first step|
 |ISTR(I)<​sup>​60,​ 65, 70</​sup>​ \\ I=1,​3|Iterations where the stiffness matrix is computed. If the values are equal to zero, the initial definitions are used again| |ISTR(I)<​sup>​60,​ 65, 70</​sup>​ \\ I=1,​3|Iterations where the stiffness matrix is computed. If the values are equal to zero, the initial definitions are used again|
 |IPRECT<​sup>​75</​sup>​|= 0 Convergence is obtained as far as one of the criteria (force or displacement) is achieved \\ = 1 Convergence is obtained when both criteria are achieved \\ = 2 Convergence is obtained when the displacement criterion is achieved \\ = 3 Convergence is obtained when the force criterion is achieved \\ = -1 in linear analysis, convergence is imposed after a resolution| |IPRECT<​sup>​75</​sup>​|= 0 Convergence is obtained as far as one of the criteria (force or displacement) is achieved \\ = 1 Convergence is obtained when both criteria are achieved \\ = 2 Convergence is obtained when the displacement criterion is achieved \\ = 3 Convergence is obtained when the force criterion is achieved \\ = -1 in linear analysis, convergence is imposed after a resolution|
Line 195: Line 208:
  
 ---- ----
-===== Last lines (2G10.0, I5, G10.0) ​===== +===== Last lines ===== 
-Repeat max 15000 times. :!: Over 15000 times this can lead to problems in the execution such as wrong value of DMAXMU.+Repeat max 15000 times. :!: Over 15000 times this can lead to problems in the execution such as wrong value of DMAXMU. ​ 
 +==== IF ILSAV = 0 (2G10.0, I5, G10.0) ====
 |ALSAV<​sup>​10</​sup>​|Multiplier of the imposed forces or displacements for which one wishes a printing according to IOPT and a saving on NRESU (oto file)| |ALSAV<​sup>​10</​sup>​|Multiplier of the imposed forces or displacements for which one wishes a printing according to IOPT and a saving on NRESU (oto file)|
 |DELTAT_OTO<​sup>​20</​sup>​|If ≠ 0, new value of the time step after a saving on NRESU| |DELTAT_OTO<​sup>​20</​sup>​|If ≠ 0, new value of the time step after a saving on NRESU|
Line 204: Line 218:
 After the last multiplier (when the time is bigger than the largest value of ALSAV), it saves all the steps. \\ After the last multiplier (when the time is bigger than the largest value of ALSAV), it saves all the steps. \\
 :!: do NOT put a zero in the list (otherwise, the rest of the list will be skipped and every step will be saved) :!: do NOT put a zero in the list (otherwise, the rest of the list will be skipped and every step will be saved)
 +==== IF ILSAV = 1 (G15.0, G10.0, I5, G10.0) ==== 
 +|ALSAV<​sup>​10</​sup>​|Multiplier of the imposed forces or displacements for which one wishes a printing according to IOPT and a saving on NRESU (oto file)| 
 +|DELTAT_OTO<​sup>​20</​sup>​|If ≠ 0, new value of the time step after a saving on NRESU| 
 +|INIT_OTO<​sup>​25</​sup>​|If = 1, reset the nodal speed to 0 until good convergence| 
 +|DMAXMU_OTO<​sup>​35</​sup>​|If ≠ 0, new value of the DMAXMU (max. value of the multiplier, see 6th line, col. 40) after a saving on NRESU \\ If = 0, DMAXMU is restored to its initial value| 
 +A blank line indicates the end of the data. \\ 
 +After the last multiplier (when the time is bigger than the largest value of ALSAV), it saves all the steps. \\ 
 +:!: do NOT put a zero in the list (otherwise, the rest of the list will be skipped and every step will be saved) 
 +==== If ILSAV = 2 ==== 
 +ILSAV = 2 allows to define the printing times cyclically. This is particularly useful for cyclic loadings in combination with the use cyclic definition in the .LOA or .DEP file (see [[appendices:​a2|Appendix 2: Non radial loading paths (1)]]).  
 +^1st line (G10.0, I5)^^ 
 +|Period| Period of the cyclic definition for printing| 
 +|NTIME| Number of printings per period| 
 +^Line 2 to NTIME + 1 (G10.0)^^ 
 +|t<​sub>​i</​sub>​|Time at which one wishes a printing. \\ A printing will be made for every time t<​sub>​i</​sub>​+K*Period as long as that time<​ALAMBF and K*NTIME<​50000|
  
  
  
lagamex/auto.1561033292.txt.gz · Last modified: 2020/08/25 15:34 (external edit)