====== SSH3D ======
3D solid-shell element
===== Description =====
{{ :elements:blz3d.png?300|}}
Type: 23 \\ \\
Implemented by: A. Ben Bettaieb, L. Duchêne, A-M. Habraken (2009)
==== Files ====
Prepro: SSH3DA.F \\
Lagamine: SSH3DB.F
===== Input file =====
^Title (A5)^^
|TITLE|"SSH3D" in the first 5 columns|
^Control data (4I5)^^
|NELEM|Number of elements|
|NEAS|Number of EAS modes (Enhanced Assumed Strain), between 1 and 30|
|ILOAX |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes|
|:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes|
|:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes|
|:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method|
|:::|tens (only for ILOAX>0): \\ = 0 for local axes e1, e2, e3 initially parallel to global axes ex, ey, ez \\ = 1 for local axes e1, e2 given (and e3=e1∧e2) \\ = 2 for local axes e1, e2 initially in the plane (ex, ey) forming an angle θ with ex, ey (and e3=e1∧e2)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element|
|NPTH|Number of integration points on the width (in the ζ direction) of the element (NPTH ∈ [2,10]). The number of integration points in the ξ-η plane is equal to 4.|
^1 to 3 lines depending on NEAS value - List of EAS modes (14I5)^^
|EAS(List1)|List of 1:NEAS if NEAS ∈ [1,14] or 1:14 if NEAS > 14|
|EAS(List2)|List of 15:NEAS if NEAS ∈ [15,28] or 15:28 if NEAS > 28|
|EAS(List3)|List of 29:NEAS if NEAS ∈ [29,30]|
^Definition of the elements (I5/8I5)^^
|LMATE|Material law|
|NODES(8)|List of nodes|
===== Results =====
Cauchy stresses in global axes $\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz}$
===== Order of the integration points =====
Starting from negative coordinates, one varies: \\
- the ξ
- the η
- the ζ
Example for 8 IP:
- ξ = -0,57; η = -0,57; ζ = -0,57
- ξ = -0,57; η = -0,57; ζ = +0,57
- ξ = -0,57; η = +0,57; ζ = -0,57
- ξ = -0,57; η = +0,57; ζ = +0,57
- ξ = +0,57; η = -0,57; ζ = -0,57
- ξ = +0,57; η = -0,57; ζ = +0,57
- ξ = +0,57; η = +0,57; ζ = -0,57
- ξ = +0,57; η = +0,57; ζ = +0,57