User Tools

Site Tools


elements:ssh3d

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:ssh3d [2019/03/26 17:03]
ehssen
elements:ssh3d [2020/08/25 15:46] (current)
Line 1: Line 1:
 ====== SSH3D ====== ====== SSH3D ======
 +3D solid-shell element
 ===== Description ===== ===== Description =====
 +{{  :​elements:​blz3d.png?​300|}}
 +Type: 23 \\ \\
 +Implemented by: A. Ben Bettaieb, L. Duchêne, A-M. Habraken (2009)
  
-{{ :​elements:​blz3d.png?​300|}} +==== Files ====
-8 node large strain shell element. \\ +
- +
-Implemented by: Amine Ben Bettaieb, December 2009 +
- +
-Type: 23+
  
 Prepro: SSH3DA.F \\ Prepro: SSH3DA.F \\
-Lagamine: SSH3DB.F\\+Lagamine: SSH3DB.F
  
 ===== Input file ===== ===== Input file =====
-^TITLE (A5)^^ +^Title (A5)^^ 
-|TITLE ​ 'SSH3D' ​in columns 1 to 5+|TITLE|"SSH3D" ​in the first 5 columns
-^CONTROL ​(4I5)^^+^Control data (4I5)^^ 
 +|NELEM|Number of elements| 
 +|NEAS|Number of EAS modes (Enhanced Assumed Strain), between ​and 30| 
 +|ILOAX ​ |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes| 
 +|:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| 
 +|:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| 
 +|:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation ​to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| 
 +|:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​ (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| 
 +|NPTH|Number of integration points on the width (in the ζ direction) of the element (NPTH ∈ [2,10]). The number of integration points in the ξ-η plane is equal to 4.
 +^1 to 3 lines depending on NEAS value - List of EAS modes (14I5)^^ 
 +|EAS(List1)|List of 1:NEAS if NEAS ∈ [1,14] or 1:14 if NEAS > 14| 
 +|EAS(List2)|List of 15:NEAS if NEAS ∈ [15,28] or 15:28 if NEAS > 28| 
 +|EAS(List3)|List of 29:NEAS if NEAS ∈ [29,30]| 
 +^Definition of the elements (I5/8I5)^^  
 +|LMATE|Material law| 
 +|NODES(8)|List of nodes| 
 +===== Results ===== 
 +Cauchy stresses in global axes $\sigma_x,​\sigma_y,​\sigma_z,​\sigma_{xy},​\sigma_{xz},​\sigma_{yz}$ 
 + 
 +===== Order of the integration points ===== 
 +Starting from negative coordinates,​ one varies: \\ 
 +  - the ξ 
 +  - the η 
 +  - the ζ 
 +Example for 8 IP: 
 +  - ξ = -0,57; η = -0,57; ζ = -0,57 
 +  - ξ = -0,57; η = -0,57; ζ = +0,57 
 +  - ξ = -0,57; η = +0,57; ζ = -0,57 
 +  - ξ = -0,57; η = +0,57; ζ = +0,57 
 +  - ξ = +0,57; η = -0,57; ζ = -0,57 
 +  - ξ = +0,57; η = -0,57; ζ = +0,57 
 +  - ξ = +0,57; η = +0,57; ζ = -0,57 
 +  - ξ = +0,57; η = +0,57; ζ = +0,57
  
elements/ssh3d.1553616204.txt.gz · Last modified: 2020/08/25 15:34 (external edit)