This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
elements:ssh3d [2019/03/26 17:03] ehssen |
elements:ssh3d [2020/08/25 15:46] (current) |
||
---|---|---|---|
Line 1: | Line 1: | ||
====== SSH3D ====== | ====== SSH3D ====== | ||
+ | 3D solid-shell element | ||
===== Description ===== | ===== Description ===== | ||
+ | {{ :elements:blz3d.png?300|}} | ||
+ | Type: 23 \\ \\ | ||
+ | Implemented by: A. Ben Bettaieb, L. Duchêne, A-M. Habraken (2009) | ||
- | {{ :elements:blz3d.png?300|}} | + | ==== Files ==== |
- | 8 node large strain shell element. \\ | + | |
- | + | ||
- | Implemented by: Amine Ben Bettaieb, December 2009 | + | |
- | + | ||
- | Type: 23 | + | |
Prepro: SSH3DA.F \\ | Prepro: SSH3DA.F \\ | ||
- | Lagamine: SSH3DB.F\\ | + | Lagamine: SSH3DB.F |
===== Input file ===== | ===== Input file ===== | ||
- | ^TITLE (A5)^^ | + | ^Title (A5)^^ |
- | |TITLE | 'SSH3D' in columns 1 to 5| | + | |TITLE|"SSH3D" in the first 5 columns| |
- | ^CONTROL (4I5)^^ | + | ^Control data (4I5)^^ |
+ | |NELEM|Number of elements| | ||
+ | |NEAS|Number of EAS modes (Enhanced Assumed Strain), between 1 and 30| | ||
+ | |ILOAX |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes| | ||
+ | |:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| | ||
+ | |:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| | ||
+ | |:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| | ||
+ | |:::|tens (only for ILOAX>0): \\ = 0 for local axes e<sub>1</sub>, e<sub>2</sub>, e<sub>3</sub> initially parallel to global axes e<sub>x</sub>, e<sub>y</sub>, e<sub>z</sub> \\ = 1 for local axes e<sub>1</sub>, e<sub>2</sub> given (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>) \\ = 2 for local axes e<sub>1</sub>, e<sub>2</sub> initially in the plane (e<sub>x</sub>, e<sub>y</sub>) forming an angle θ with e<sub>x</sub>, e<sub>y</sub> (and e<sub>3</sub>=e<sub>1</sub>∧e<sub>2</sub>)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| | ||
+ | |NPTH|Number of integration points on the width (in the ζ direction) of the element (NPTH ∈ [2,10]). The number of integration points in the ξ-η plane is equal to 4.| | ||
+ | ^1 to 3 lines depending on NEAS value - List of EAS modes (14I5)^^ | ||
+ | |EAS(List1)|List of 1:NEAS if NEAS ∈ [1,14] or 1:14 if NEAS > 14| | ||
+ | |EAS(List2)|List of 15:NEAS if NEAS ∈ [15,28] or 15:28 if NEAS > 28| | ||
+ | |EAS(List3)|List of 29:NEAS if NEAS ∈ [29,30]| | ||
+ | ^Definition of the elements (I5/8I5)^^ | ||
+ | |LMATE|Material law| | ||
+ | |NODES(8)|List of nodes| | ||
+ | ===== Results ===== | ||
+ | Cauchy stresses in global axes $\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz}$ | ||
+ | |||
+ | ===== Order of the integration points ===== | ||
+ | Starting from negative coordinates, one varies: \\ | ||
+ | - the ξ | ||
+ | - the η | ||
+ | - the ζ | ||
+ | Example for 8 IP: | ||
+ | - ξ = -0,57; η = -0,57; ζ = -0,57 | ||
+ | - ξ = -0,57; η = -0,57; ζ = +0,57 | ||
+ | - ξ = -0,57; η = +0,57; ζ = -0,57 | ||
+ | - ξ = -0,57; η = +0,57; ζ = +0,57 | ||
+ | - ξ = +0,57; η = -0,57; ζ = -0,57 | ||
+ | - ξ = +0,57; η = -0,57; ζ = +0,57 | ||
+ | - ξ = +0,57; η = +0,57; ζ = -0,57 | ||
+ | - ξ = +0,57; η = +0,57; ζ = +0,57 | ||