====== CSOL3 ====== ===== Description ===== Coupled mechanical-flow analysis in large deformations. \\ \\ {{:elements:3delem.png?600|}} {{:elements:tetraedre.png?400|}} \\ \\ Type: 223 \\ \\ Implemented by: J-P. Radu (1997) ==== Files ==== Prepro: CSOL3A.F \\ Lagamine: CSOL3B.F ===== Input file ===== ^Title (A5)^^ |TITLE|"CSOL3" in the first 5 columns| ^Control data (4I5)^^ |NELEM|Number of elements| |ISPSMAS|= 0 → nothing \\ = 1 → specific weight taken into account if and only if [[:prepro#remark_on_ntana|NTANA]] < 0| |INSIG|= 0 → No initial stress \\ = 1 or 2 → Initial stresses| |INBIO|= 0 → No Biot coefficient \\ = 1 → Isotropic Biot coefficient \\ = 2 → Anisotropic Biot coefficient \\ Only for orthotropic mechanical law [[laws:orthopla|ORTHOPLA]]| ^Specific mass - Only if ISPMAS = 1 (1G10.0)^^ |SPEMA5|Specific mass| ^Initial stresses - Only if INSIG > 0 (4G10.0)^^ |If INSIG=1: $\sigma_z=\sigma_{z0}+zd\sigma_{z}$ \\ If INSIG=2: $\sigma_z=min(\sigma_{z0}+zd\sigma_z,0)$|| |SIGZ0| $\sigma_{y0}$ effective stress $\sigma_y$ at the axes origin| |DSIGZ|Effective stress gradient along Y axis| |AK0X|$k_0$ ratio $\sigma_x/\sigma_z$| |AK0Y|$k_0$ ratio $\sigma_y/\sigma_z$ (if AK0Y=0, AK0Y=AK0X)| |In the calculation of SIGZ0 and DSIGZ, the apparent density $\rho_a'$ must be taken into consideration: \[\rho_a'=\left[(1-n)\rho_s+n S_w\rho_w\right]-\rho_w\] With: \\ $\rho_s$ the solid density (this corresponds to the density of a fictive sample where porosity would be equal to zero) \\ $\rho_w$ the density of the fluid \\ $n$ the porosity defined in the flow law related to this element \\ $S_w$ the fluid saturation, ∈ [0,1]|| ^Biot coefficient - Only if INBIO = 1 (1G10.0)^^ |CBIOT|Biot coefficient| ^Definition of the elements (6I5/14I5)^^ |NNODE|Number of nodes of the brick: 8, 16, 20, 24, 32, or 4 for the tetrahedron| |NPI(1)|Number of integration points in each direction| |NPI(2)|:::| |NPI(3)|:::| |LMAT1|Mechanical law| |LMAT2|Flow law| |NODES|List of nodes| ===== Results ===== $\sigma_x,\sigma_y,\sigma_z,\sigma_{xy},\sigma_{xz},\sigma_{yz},f_x,f_y,f_z,f_{stored}$ In global axes