User Tools

Site Tools


elements:blz3d

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
elements:blz3d [2019/03/04 10:01]
admin
elements:blz3d [2021/12/17 16:34] (current)
laurent
Line 1: Line 1:
-====== BLZ3D ======+====== BLZ3D/​BWD3D ​======
  
 ===== Description ===== ===== Description =====
Line 6: Line 6:
 8 node large strain volumetric element with hourglass and locking control. \\ 8 node large strain volumetric element with hourglass and locking control. \\
  
-Implemented by: Zhu Yongyi, January 1992+Implemented by: Zhu Yongyi, January 1992 \\ 
 +Improved by: Laurent Duchêne and Pierre de Montleau, August 2004 (BWD3D version)
  
 Type: 22 Type: 22
  
 Prepro: BLZ3DA.F \\ Prepro: BLZ3DA.F \\
-Lagamine: BLZ3DB.F\\+Lagamine: BLZ3DB.F, BWD3DB.F\\
  
 ===== Input file ===== ===== Input file =====
-|**Title** ​(A5)                 ||+^TITLE ​(A5)^^
 |TITLE ​ | '​BLZ3D'​ in columns 1 to 5| |TITLE ​ | '​BLZ3D'​ in columns 1 to 5|
-|**Control** ​(5I5)              ||+^CONTROL ​(5I5)^^
 |NELEM ​ | Number of elements |  ​ |NELEM ​ | Number of elements |  ​
-|INDPP ​ |=0 if no weight (or no density if NTANA=-1)| +|INDPP ​ |= 0 if no weight (or no density if NTANA=-1)| 
-|:::    |=1 if weight taken into account (or density)| +|:::    |= 1 if weight taken into account (or density)| 
-|INSHE ​ |=0 for automatic calculation of shear locking parameter| +|INSHE ​ |= 0 for automatic calculation of shear locking parameter| 
-|:::    |=1 if shear coefficient taken into account| +|:::    |= 1 if shear coefficient taken into account ​(see below)
-|:::    |=-1 for use of element BWD3D (only 1 integration point)| +|:::    |= -1 for use of element BWD3D (only 1 integration point)| 
-|ILOAX ​ |=0 for global axis computation \\ ☛ Objectivity must be verified in the material law \\ ☛ No rotation of material axes| +|ILOAX ​ |= 0 for global axis computation \\ ☛ Objectivity must be verified in the material law (with Jaumann correction)\\ ☛ No rotation of material axes| 
-|:::|<0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| +|:::|< 0 for computation with constant and symetrical velocity gradients \\ pseudo local axes : use of local axes on the time step but no evolution of the local axes on the following time step \\ ☛ Objectivity is verified \\ ☛ No rotation of material axes| 
-|:::|>0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| +|:::|> 0 for computation with local axes \\ ☛ Objectivity is verified \\ ☛ Rotation of material axes| 
-|:::|units: \\ = +|:::|units: \\ = 1 for rotations incorporated in local tangent matrix :!: **Not available** \\ = 2 apply final rotation to local tangent matrix \\ = 3 apply initial rotation to local tangent matrix \\ = 4 compute tangent matrix through global perturbation method| 
- +|:::|tens (only for ILOAX>​0):​ \\ = 0 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub>,​ e<​sub>​3</​sub>​ initially parallel to global axes e<​sub>​x</​sub>,​ e<​sub>​y</​sub>,​ e<​sub>​z</​sub>​ \\ = 1 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ given (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​) \\ = 2 for local axes e<​sub>​1</​sub>,​ e<​sub>​2</​sub> ​ initially in the plane (e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​) forming an angle θ with e<​sub>​x</​sub>,​ e<​sub>​y</​sub>​ (and e<​sub>​3</​sub>​=e<​sub>​1</​sub>​∧e<​sub>​2</​sub>​)\\ = 3 same as 1 with different local axes for each element \\ = 4 same as 2 with different local axes for each element| 
 +|ISIG0| = 0 if no initial stresses| 
 +|:::| = 1 for input of initial stresses| 
 +^CONSIDERATION OF WEIGHT (4G10.0) \\ Only if INDPP = 1 ^^ 
 +|WSPE(1)| = specific weight in X direction| 
 +|WSPE(2)| = specific weight in Y direction| 
 +|WSPE(3)| = specific weight in Z direction| 
 +|WSPE(4)| = density|  
 +^CONSIDERATION OF SHEAR LOCKING (1G10.0) \\ Only if INSHE = 1 ^^ 
 +|PARSHE| Shear locking coefficient ∈ [0,1] \\ - close to 0: avoid shear locking but higher risk of hourglass modes (use for thin elements in flexion) \\ - close to 1: avoid hourglass modes but higher risk of shear locking (use for cubic elements in shear)| 
 +^INITIAL ORIENTATION OF LOCAL AXES (6G10.0) \\ Only if tens of ILOAX = 1 or 3 \\ (only one line if tens of ILOAX = 1, repeated for each element if tens of ILOAX = 3) ^^ 
 +|e<​sub>​1</​sub>​(x)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​x</​sub>​| 
 +|e<​sub>​1</​sub>​(y)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​y</​sub>​| 
 +|e<​sub>​1</​sub>​(z)|coordinate of e<​sub>​1</​sub>​ along e<​sub>​z</​sub>​| 
 +|e<​sub>​2</​sub>​(x)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​x</​sub>​| 
 +|e<​sub>​2</​sub>​(y)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​y</​sub>​| 
 +|e<​sub>​2</​sub>​(z)|coordinate of e<​sub>​2</​sub>​ along e<​sub>​z</​sub>​| 
 +|Note: These vectors are normalized after reading but should be orthogonal: \\ e<​sub>​1</​sub>​ • e<​sub>​2</​sub>​ = e<​sub>​1</​sub>​(x) * e<​sub>​2</​sub>​(x) + e<​sub>​1</​sub>​(y) * e<​sub>​2</​sub>​(y) + e<​sub>​1</​sub>​(z) * e<​sub>​2</​sub>​(z) = 0|| 
 +^INITIAL ORIENTATION OF LOCAL AXES (1G10.0) \\ Only if tens of ILOAX = 2 or 4  \\ (only one line if tens of ILOAX = 2, repeated for each element if tens of ILOAX = 4)^^ 
 +|THETA| Angle between e<​sub>​1</​sub>​ and e<​sub>​x</​sub>​ in degrees| 
 +^DEFINITION OF THE ELEMENTS (2I5/​8I5/​6G10)^^ 
 +|NINTE| Number of integration points (1, 2, 4 or 8) \\ if NINTE = 1, add 40 to MVARI compared to maximum required by laws | 
 +|LMATE| Number of the material law| 
 +|NODES(8)| List of nodes| 
 +|SIG0(6)| List of initial stresses (Only if ISIG0=1)|
elements/blz3d.1551690063.txt.gz · Last modified: 2020/08/25 15:33 (external edit)