User Tools

Site Tools


appendices:a8

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
appendices:a8 [2023/12/07 09:53]
abhishek
appendices:a8 [2024/06/17 11:21] (current)
arthur
Line 86: Line 86:
 \[SATUR ​ = (ONE+(PC/​CSW1)**CSW2)**(-COEFM)*(ONE-PC/​CSW3)**CSW4\] \[SATUR ​ = (ONE+(PC/​CSW1)**CSW2)**(-COEFM)*(ONE-PC/​CSW3)**CSW4\]
  
-^ISR = 22 - Romera ​et al., 2011^^+^ISR = 22 - Romero ​et al., 2011^^
  
 ^ISR = 23 - Unconstant parameters, function of the porosity^^ ^ISR = 23 - Unconstant parameters, function of the porosity^^
Line 124: Line 124:
 /!\ Two parameters must be passed through the DUM argument of FKRST: DUM(1)=$s^{t-1}$ and DUM(2)=$S_w^{t-1}$. /!\ Two parameters must be passed through the DUM argument of FKRST: DUM(1)=$s^{t-1}$ and DUM(2)=$S_w^{t-1}$.
  
-^ISR = 55 Soil water retention curve considering gas entry pressure (EURAD-Gas Task4.2).^^ ​+^ISR = 55Soil water retention curve considering gas entry pressure (EURAD-Gas Task4.2).^^ ​
  
-In the below formulations,​ $p_c$ and is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $ε$ is a numerical parameter (0.01 or 0.001), m and n  are fitting parameters.+In the below formulations,​ $p_c$ and is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $ε$ is a numerical parameter (0.01 or 0.001), ​$mand $n are fitting parameters.
  
-\[p_c=\begin{cases} +\[ p_c= \begin{cases} -\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}},​ \quad \text{if} \; S_{e}\leq 1-\varepsilon
--\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}},​ \textup{if} \; S_{e}\leq 1-\varepsilon+
 \\  \\ 
--\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}}.\left ( \frac{1-S_{e}}{\varepsilon } \right ), \textup{if} \; \left ( 1-\varepsilon \right ) < S_{e}< 1+-\frac{1}{\alpha}\left ( \left ( S_{e}^{*}S_{e}\right )^{-\frac{1}{m}}-1\right)^{\frac{1}{n}}.\left ( \frac{1-S_{e}}{\varepsilon } \right ), \quad \text{if} \; \left ( 1-\varepsilon \right ) < S_{e}< 1
 \\  \\ 
-0, \textup{if} \; S_{e}=1 +0, \quad \text{if} \; S_{e}=1 
-\end{cases}].+\end{cases}\].
  
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\]
 +\[ S_{e}^{*}=\left ( 1+\left (\alpha P_{e}  \right )^{n}  \right )^{-m}\]
 +\[ m=\left ( 1-\frac{1}{n} \right )\]
 +\[ \alpha =\frac{1}{P_{r}}\]
  
 +So as per the above formulations,​ the required parameters are as follows:
  
-/!Two parameters must be passed through ​the DUM argument ​of FKRST: DUM(1)=$s^{t-1}$ ​and DUM(2)=$S_w^{t-1}$.+**CSR1** = Air-entry pressure i.e., $P_r$  
 + 
 +**CSR2** = $n$ 
 + 
 +**CSR3** = Gas entry pressure i.e., $P_e$ 
 + 
 +**CSR4** = $\varepsilon$ 
 + 
 +**CSR5** = Residual degree of water saturation i.e., $S_r$ 
 + 
 +**CSR6** = Max. degree of water saturation i.e., 1 
 + 
 +**CSR7** = NIL 
 + 
 +/**NOTE**The above water retention curve is implemented in conjunction with the water and air relative permeability functions which also consider the effect ​of gas entry pressure. It is advised to go through these formulations i.e., **IKW=55** for relative permeability function for water and **IKA=55** for air.
  
  
Line 144: Line 162:
 ===== Water relative permeability ===== ===== Water relative permeability =====
  
-  * **__IKW ​0__** \[k_{rw} = 1\] +^IKW 0^^   
-  * **__IKW ​1__** \[k_{rw} = CKW3 - CKW1 (1-S_{r,​w})^{CKW2}\] ​__Example__: CKW1 = 2.207; CKW2 = 0.953; CKW3 = 1 +\[k_{rw} = 1\] 
-  * **__IKW ​2__** \[k_e^{rel} (S_e) = \left(1+\left(S_{r,​w}^{CKW1} - 1\right)^{CKW2}\right)^{-1}\] ​__Example__: Momas: CKW1 = -2.429; CKW2 = 1.176 + 
-  * **__IKW ​3__** \[k_{r,w} = \begin{cases} \exp(CKW1*S_w+CKW2*S_w^2) & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] +^IKW 1^^    
-  * **__IKW ​4__** \[k_{r,w} = \begin{cases} \frac{(S_w-S_{res})^{CKW1}}{(S_{r,​field}-S_{res})^{CKW2}} & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] __Example__:​ $CKW1 = 4$; $CKW2 = 4$; $S_{r,​field} = 1$; $S_{res}=0.1$ +\[k_{rw} = CKW3 - CKW1 (1-S_{r,​w})^{CKW2}\] ​ 
-  * **__IKW ​7__** \[k_{rw}=\sqrt{S_{rw}} \left(1-\left(1-S_{rw}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] +Example: CKW1 = 2.207; CKW2 = 0.953; CKW3 = 1 
-  * **__IKW ​8__** \[k_{rw} = S_{rw}^3\] + 
-  * **__IKW ​9__** \[k_{rw}=\sqrt{S_{we}} \left(1-\left(1-S_{we}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKW2\] \[S_{rg,​res}=CKW3\]+^IKW 2^^  
 +\[k_e^{rel} (S_e) = \left(1+\left(S_{r,​w}^{CKW1} - 1\right)^{CKW2}\right)^{-1}\] ​ 
 +Example: Momas: CKW1 = -2.429; CKW2 = 1.176 
 + 
 +^IKW 3^^    
 +\[k_{r,w} = \begin{cases} \exp(CKW1*S_w+CKW2*S_w^2) & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] 
 + 
 +^IKW 4^^  
 +\[k_{r,w} = \begin{cases} \frac{(S_w-S_{res})^{CKW1}}{(S_{r,​field}-S_{res})^{CKW2}} & \quad \text{if } S_w \geq S_{res} \\ k_{r,min} & \quad \text{if } S_w<​S_{res} \end{cases} \] __Example__:​ $CKW1 = 4$; $CKW2 = 4$; $S_{r,​field} = 1$; $S_{res}=0.1$ 
 + 
 +^IKW 7^^  
 +  
 +\[k_{rw}=\sqrt{S_{rw}} \left(1-\left(1-S_{rw}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] 
 + 
 +^IKW 8^^  
 + \[k_{rw} = S_{rw}^3\] 
 + 
 +^IKW 9^^   
 +\[k_{rw}=\sqrt{S_{we}} \left(1-\left(1-S_{we}^{\frac{1}{CKW1}}\right)^{CKW1}\right)^2\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKW2\] \[S_{rg,​res}=CKW3\] 
 + 
 +^IKW = 55, Relative permeability function for water considering gas entry pressure (EURAD-Gas Task4.2).^^  
 + 
 +Similar to **ISR = 55**, $p_c$ is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $m$ and $n$  are fitting parameters. 
 + 
 +\[ k_{rw}= \begin{cases} \sqrt{S_{e}}\left [ \frac{1-\left ( 1-\left (S_{e}^{*}S_{e} \right )^{1/m} \right )^{m}}{1-\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}} \right ]^{2}, \quad \text{if} \; S_{e}\leq 1 
 +\\  
 +1, \quad \text{if} \; S_{e} = 1 
 +\end{cases}\]. 
 + 
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\] 
 +\[ S_{e}^{*}=\left ( 1+\left (\alpha P_{e}  \right )^{n}  \right )^{-m}\] 
 +\[ m=\left ( 1-\frac{1}{n} \right )\] 
 +\[ \alpha =\frac{1}{P_{r}}\] 
 + 
 +/**NOTE**\ The above formulation is implemented in conjunction with either **ISR=5** or **ISR=55**. In case of ISR=55, it will automatically adopt the required parameters from the definition of soil water retention curve. Whereas, in case of ISR=5 (Classical Van Genuchten formulation) CSR3 will represent the gas entry pressure i.e. $P_{e}$. The definition of remaining parameters will be same.  
 ===== Air relative permeability ===== ===== Air relative permeability =====
  
-  * **__IKA ​0__** \[k_{ra}=1\] +^IKA 0^^   
-  * **__IKA ​1__** \[k_{ra} = (1-S_e)^{CKA1}(1-S_e^{CKA2})\] \[S_e=\frac{S_{rw}-S_{rw,​u}}{1-S_{rw,​u}}\] ​__Example__: CKA1 = 2; CKA2 = 5/3 +\[k_{ra}=1\] 
-  * **__IKA ​2__** \[k_{r,​a}=CKA1\] + 
-  * **__IKA ​3__** \[S_e = \frac{S_{r,​w}-S_{r,​u}}{1-S_{rw,​u}} \\ \begin{cases} \text{If } S_e<0 => S_e = 0 \\ \text{If } 0<​S_e<​0.55 => k_{ra}=(0.55-S_e)^{CKA1}(1-S_e^{CKA2}) \\ \text{If } S_e>0.55 => k_{ra}=k_{rmin} \end{cases} \] __Remark__:  \[k_{w,​effectif}=k_{f,​intrinsic}k_{rw} \\ k_{a,​effectif}=k_{f,​intrinsic}k_{aw}\] +^IKA 1^^   
-  * **__IKA ​6__** \[k_{ra}=\sqrt{1-S_{r,​w}}\left(1-S_{r,​w}^{\frac{1}{CKA1}}\right)^{2CKA1}\] +\[k_{ra} = (1-S_e)^{CKA1}(1-S_e^{CKA2})\] \[S_e=\frac{S_{rw}-S_{rw,​u}}{1-S_{rw,​u}}\] ​ 
-  * **__IKA ​7__** \[k_{ra}=\sqrt{1-S_{we}}\left(1-S_{we}^{\frac{1}{CKA1}}\right)^{2CKA1}\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKA2\] \[S_{rg,​res}=CKA3\] +Example: CKA1 = 2; CKA2 = 5/3 
-  * **__IKA ​8__** \[k_{ra}=CKA2(1-S_{we})^{CKA1}\] \[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\]+ 
 +^IKA 2^^    
 +\[k_{r,​a}=CKA1\] 
 + 
 +^IKA 3^^    
 +\[S_e = \frac{S_{r,​w}-S_{r,​u}}{1-S_{rw,​u}} \\ \begin{cases} \text{If } S_e<0 => S_e = 0 \\ \text{If } 0<​S_e<​0.55 => k_{ra}=(0.55-S_e)^{CKA1}(1-S_e^{CKA2}) \\ \text{If } S_e>0.55 => k_{ra}=k_{rmin} \end{cases} \]  
 +Remark:  \[k_{w,​effectif}=k_{f,​intrinsic}k_{rw} \\ k_{a,​effectif}=k_{f,​intrinsic}k_{aw}\] 
 + 
 +^IKA 6^^    
 +\[k_{ra}=\sqrt{1-S_{r,​w}}\left(1-S_{r,​w}^{\frac{1}{CKA1}}\right)^{2CKA1}\] 
 + 
 +^IKA 7^^   
 +\[k_{ra}=\sqrt{1-S_{we}}\left(1-S_{we}^{\frac{1}{CKA1}}\right)^{2CKA1}\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] \[S_{rw,​res}=CKA2\] ​ 
 +\[S_{rg,​res}=CKA3\] 
 + 
 +^IKA 8^^   
 +\[k_{ra}=CKA2(1-S_{we})^{CKA1}\] ​ 
 +\[S_e=\frac{S_{rw}-S_{rw,​res}}{1-S_{rw,​res}-S_{rg,​res}}\] 
 + 
 +^IKA = 55, Relative permeability function for gas considering gas entry pressure (EURAD-Gas Task4.2). ^^  
 + 
 +Similar to **ISR = 55**, $p_c$ is the capillary pressure ($p_c=p_{air}-p_{water}$),​ $α$ is the inverse of air-entry pressure i.e., $P_r$, $S_e$ is the effective degree of water saturation, $S_l$ is the degree of water saturation, $S_r$  is residual degree of water saturation, $S_e^*$ is the effective degree of saturation considering the explicit gas entry pressure i.e., $P_e$, $m$ and $n$  are fitting parameters. Additionally,​ $f_{g}$ is the ratio of intrinsic permeability values for Gas ($K_{Gas}$) to Water ($K_{Water}$). 
 + 
 +\[ k_{rg}= \begin{cases} f_{g}\sqrt{1-S_{e}}\left [ \frac{\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}-\left ( 1-\left (S_{e}^{*}S_{e} \right )^{1/m} \right )^{m}}{\left ( 1-\left (S_{e}^{*}\right )^{1/m} \right )^{m}-1} \right ]^2, \quad \text{if} \; S_{e}\leq 1 
 +\\  
 +0, \quad \text{if} \; S_{e} = 1 
 +\end{cases}\]. 
 +\[ f_{g}=\frac{K_{Gas}}{K_{Water}}\] 
 +\[ S_{e}=\frac{S_{l}-S_{r}}{1-S_{r}}\] 
 +\[ S_{e}^{*}=\left ( 1+\left (\alpha P_{e}  \right )^{n}  \right )^{-m}\] 
 +\[ m=\left ( 1-\frac{1}{n} \right )\] 
 +\[ \alpha =\frac{1}{P_{r}}\] 
 + 
 + 
 +/**NOTE**\ Similar to IKW=55, the above formulation is implemented in conjunction with either **ISR=5** or **ISR=55**. In case of ISR=55, it will automatically adopt the required parameters from the definition of soil water retention curve, EXCEPT the parameter $f_{g}$.  
 + 
 +So, CKA1 = $f_{g}$ i.e. $\frac{K_{Gas}}{K_{Water}}$ 
 + 
 +Whereas, in case of ISR=5 (Classical Van Genuchten formulation) CSR3 will represent the gas entry pressure i.e. $P_{e}$. The definition of remaining parameters will be same except the parameter CKA1 which will represent $f_{g}$ i.e. $\frac{K_{Gas}}{K_{Water}}$. 
 ===== Thermal conductivity ===== ===== Thermal conductivity =====
 +
 ^  ITHERM ​ ^  $\Gamma_T$ ​ ^ ^  ITHERM ​ ^  $\Gamma_T$ ​ ^
 |  \[1\]  |  \[nS_w\Gamma_w+nS_a\Gamma_a+(1-n)\Gamma_s\]| |  \[1\]  |  \[nS_w\Gamma_w+nS_a\Gamma_a+(1-n)\Gamma_s\]|
 |  \[2\]  |  \[CLT1*S_w +CLT2\]| |  \[2\]  |  \[CLT1*S_w +CLT2\]|
 |  \[3\]  |  \[CLT1 -\frac{CLT2}{1 + exp\left(\frac{S_w -CLT3}{CLT4}\right)}\]| |  \[3\]  |  \[CLT1 -\frac{CLT2}{1 + exp\left(\frac{S_w -CLT3}{CLT4}\right)}\]|
appendices/a8.1701939187.txt.gz · Last modified: 2023/12/07 09:53 by abhishek